Fandom

VroniPlag Wiki

Analyse:Aa

31.364Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.

Fragmente (Plagiat, gesichtet)

Kein Fragment



Fragmente (Plagiat, ungesichtet)

11 Fragmente

[1.] Analyse:Aa/Fragment 007 02 - Diskussion
Bearbeitet: 22. January 2013, 19:11 Graf Isolan
Erstellt: 22. January 2013, 18:48 (Graf Isolan)
Aa, Fragment, Molkentin et al 1998, SMWFragment, Schutzlevel, Verschleierung, ZuSichten

Typus
Verschleierung
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 7, Zeilen: 2-9
Quelle: Molkentin et al 1998
Seite(n): 215, Zeilen: re.Sp. 21-32
In response to myocyte stretch or increased loads on working heart preparations, intracellular Ca2+ concentration increases (Marban et al., 1987; Bustamante et al., 1991; Hongo et al., 1995), consistent with a role of Ca2+ in coordinating physiologic responses with enhanced cardiac output. A variety of humoral factors, including phenylephrine (PE), which induce the hypertrophic response in cardiomyocytes (Karliner et al., 1990; Sadoshima and Izumo, 1993; Sadoshima et al., 1993; Leite et al., 1994), also share the ability to elevate intracellular Ca2+ concentrations.

Bustamante JO, Ruknudin A and Sachs F (1991) Stretch-activated channels in heart cells: relevance to cardiac hypertrophy. J Cardiovasc Pharmacol 17: S110–S113.

Hongo K, White E, Gannier F, Argibay JA Garnier D and Orchard CH (1995) Effect of stretch on contraction and the Ca2+ transient ferret ventricular muscles during hypoxia and acidosis. Am J Physiol 269: C690–C697.

Karliner JS, Kariya T and Simpson PC (1990) Effects of pertussis toxin on α1-agonist-mediated phosphatidylinositide turnover and myocardial cell hypertrophy in neonatal rat myocytes. Experientia 46: 81–84.

Leite MF, Page E and Ambler S K (1994) Regulation of ANP secretion by endothelin-1 in cultured atrial myocytes: desensitization and receptor subtype. Am J Physiol 267: H2193–H2203.

Marban E, Kitakaze M, Kusuoka H, Porterfield JK, Yue DT and Chacko VP (1987) Intracellular free calcium concentrations measured with 19F NMR spectroscopy in intact ferret hearts. Proc Natl Acad Sci USA 84: 6005–6009.

Sadoshima J, and Izumo S (1993) Signal transduction pathways of angiotensin II-induced c-fos gene expression in cardiac myocytes in vitro. Circ Res 73: 424–438.

Sadoshima J, Xu Y, Slayter HS and Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75: 977–984.

In response to myocyte stretch or increased loads on working heart preparations, intracellular Ca2+ concentrations increase (Marban et al., 1987; Bustamante et al., 1991; Hongo et al., 1995), consistent with a role of Ca2+ in coordinating physiologic responses with enhanced cardiac output. A variety of humoral factors, including angiotensin II (AngII), phenylephrine (PE), and endothelin-1 (ET-1), which induce the hypertrophic response in cardiomyocytes (Karliner et al., 1990; Sadoshima and Izumo, 1993; Sadoshima et al., 1993; Leite et al., 1994), also share the ability to elevate intracellular Ca2+ concentrations.

Bustamante, J.O., Ruknudin, A., and Sachs, F. (1991). Stretch-activated channels in heart cells: relevance to cardiac hypertrophy. J. Cardiovasc. Pharmacol. 17, S110–S113.

Hongo, K., White, E., Gannier, F., Argibay, J.A., Garnier, D. (1995). Orchard CH effect of stretch on contraction and the Ca2+ transient ferret ventricular muscles during hypoxia and acidosis. Am. J. Physiol. 269, C690–C697.

Karliner, J.S., Kariya, T., and Simpson, P.C. (1990). Effects of pertussis toxin on α1-agonist-mediated phosphatidylinositide turnover and myocardial cell hypertrophy in neonatal rat myocytes. Experientia 46, 81–84.

Leite, M.F., Page, E., and Ambler, S.K. (1994). Regulation of ANP secretion by endothelin-1 in cultured atrial myocytes: desensitization and receptor subtype. Am. J. Physiol. 267, H2193–H2203.

Marban, E., Kitakaze, M., Kusuoka, H., Porterfield, J.K., Yue, D.T., and Chacko, V.P. (1987). Intracellular free calcium concentrations measured with 19F NMR spectroscopy in intact ferret hearts. Proc. Natl. Acad. Sci. USA. 84, 6005–6009

Sadoshima, J., and Izumo, S. (1993). Signal transduction pathways of angiotensin II-induced c-fos gene expression in cardiac myocytes in vitro. Circ. Res. 73, 424–438.

Sadoshima, J., Xu, Y., Slayter, H.S., and Izumo, S. (1993). Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75, 977–984.

Anmerkungen

Identisch bis hin zu den Literaturverweisen. Übernahmen bleiben ungekennzeichnet.

Sichter
Graf Isolan

[2.] Analyse:Aa/Fragment 007 13 - Diskussion
Bearbeitet: 21. January 2013, 19:45 Graf Isolan
Erstellt: 21. January 2013, 19:43 (Graf Isolan)
Aa, BauernOpfer, Fragment, SMWFragment, Schutzlevel, Van Rooij et al 2002, ZuSichten

Typus
BauernOpfer
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 7, Zeilen: 13-22
Quelle: van Rooij et al 2002
Seite(n): 48617, Zeilen: 0
Molkentin et al. (1998) and De Windt et al (2000) generated several lines of transgenic mice expressing activated forms of either calcineurin or NFATc4 in a cardiac-selective manner, which developed robust hypertrophy that quickly transitioned to ventricular dilation and overt heart failure. Hearts from transgenic mice expressing MCIP1, a dominant negative calcineurin mutant, or the calcineurin inhibitory domains of Cain or AKAP79, were largely resistant to pleiotropic, hypertrophic stimuli (Zou et al., 2001; Rothermel et al., 2001; De Windt et al., 2001). Adenoviral-mediated gene transfer of dominant negative NFAT in cultured cardiomyocytes efficiently inhibited calcineurin- and agonist induced cardiomyocyte hypertrophy (Rooij et al., 2002).

De Windt LJ, Lim HW, Taigen T, Wencker D, Condorelli G, Dorn GW, Kitsis RN and Molkentin JD (2000) Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo. Circ Res 86: 255-263.

De Windt LJ, Lim HW, Bueno OF, Liang Q, Delling U, Braz JC, Glascock BJ, Kimball TF, Del Monte F, Hajjar RJ, and Molkentin JD (2001) Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo. Proc Natl Acad Sci USA 98: 3322-3327.

Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR and Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93: 215-228.

Rothermel BA, McKinsey TA, Vega RB, Nicol RL, Mammen P, Yang J, Antos CL, Shelton JM, Bassel-Duby R, Olson EN and Williams RS (2001) Myocyteenriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc Natl Acad Sci USA 98: 3328-3333.

Van Rooij E, Doevendans PA, de Theije CC, Babiker FA, Molkentin JD, and De Windt LJ (2002) Requirement of nuclear factor of activated T-cells in calcineurinmediated cardiomyocyte hypertrophy. J Biol Chem 277: 48617-48626.

Zou Y, Hiroi Y, Uozumi H, Takimoto E, Toko H, Zhu W, Kudoh S, Mizukami M, Shimoyama M, Shibasaki F, Nagai R, Yazaki Y, and Komuro I (2001) Calcineurin plays a critical role in the development of pressure overload-induced cardiac hypertrophy. Circulation 104: 97-101.

[Seite 48617]

Molkentin et al. (10, 11) generated several lines of transgenic mice expressing activated mutants of either calcineurin or NFATc4 in a cardiac-selective manner, which developed robust hypertrophy that quickly transitioned to ventricular dilation and overt heart failure.

[Seite 48618]

A central role for calcineurin in the cardiac hypertrophic response was substantiated by the observation that hearts from transgenic mice expressing either MCIP1, a dominant negative calcineurin mutant, or the calcineurin inhibitory domains of Cain or AKAP79, were largely resistant to pleiotropic, hypertrophic stimuli (14–16). [...] Adenoviral-mediated gene transfer of dominant negative NFAT in cultured cardiomyocytes efficiently inhibited calcineurin- and agonist-induced cardiomyocyte hypertrophy.


10. Molkentin, J. D., Lu, J. R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., Grant, S. R., and Olson, E. N. (1998) Cell 93, 215–228

11. De Windt, L. J., Lim, H. W., Taigen, T., Wencker, D., Condorelli, G., Dorn, G. W., 2nd, Kitsis, R. N., and Molkentin, J. D. (2000) Circ. Res. 86, 255–263

14. Zou, Y., Hiroi, Y., Uozumi, H., Takimoto, E., Toko, H., Zhu, W., Kudoh, S., Mizukami, M., Shimoyama, M., Shibasaki, F., Nagai, R., Yazaki, Y., and Komuro, I. (2001) Circulation 104, 97–101

15. Rothermel, B. A., McKinsey, T. A., Vega, R. B., Nicol, R. L., Mammen, P., Yang, J., Antos, C. L., Shelton, J. M., Bassel-Duby, R., Olson, E. N., and Williams, R. S. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 3328–3333

16. De Windt, L. J., Lim, H. W., Bueno, O. F., Liang, Q., Delling, U., Braz, J. C., Glascock, B. J., Kimball, T. F., del Monte, F., Hajjar, R. J., and Molkentin, J. D. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 3322–3327

Anmerkungen

Patchwork aus wortwörtlich übernommenen Texten, ohne dass die Übernahmen gekennzeichnet worden wären. Die angegebenen Literaturstellen stimmen ebenfalls überein.

Sichter
(Graf Isolan)

[3.] Analyse:Aa/Fragment 008 06 - Diskussion
Bearbeitet: 21. January 2013, 23:54 Graf Isolan
Erstellt: 21. January 2013, 20:06 (Graf Isolan)
Aa, BauernOpfer, Fragment, Macian et al 2000, SMWFragment, Schutzlevel, ZuSichten

Typus
BauernOpfer
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 8, Zeilen: 6-11, 13-15
Quelle: Macian et al 2000
Seite(n): 4783, Zeilen: 0
In cells of the immune system, cooperative NFAT–AP-1 complexes are induced by stimulation of the antigen receptors of T and B cells, Fcγ receptors of macrophages and natural killer (NK) cells (Rao et al., 1997). These receptors are coupled on the one hand to calcium mobilization and on the other hand to activation of PKC/RAS pathways (Van Leeuwen and Samelson, 1999). [...] Therefore, even in a single cell type NFAT activation can evoke two distinct biological programs of gene expression that depending on AP-1 absence or presence (Macian et al., 2000).

Rao A, Luo C and Hogan PG (1997) Transcription factor of the NFAT family: regulation and function. Annu Rev Immunol 15: 707-747.

Van Leeuwen JE and Samelson LE (1999) T-cell antigen-receptor signal transduction. Curr Opin Immunol 1: 242-248.

Our results support the hypothesis that even in a single cell type, NFAT activation can evoke two distinct biological programs of gene expression, dependent or independent of NFAT–AP-1 cooperation. [...]

In cells of the immune system, cooperative NFAT–AP-1 complexes are induced by stimulation of the antigen receptors of T and B cells, the Fcγ receptors of macrophages and natural killer (NK) cells, and the Fcε receptors of mast cells and basophils (Rao et al., 1997). These receptors are coupled on the one hand to calcium mobilization and on the other hand to activation of protein kinase C (PKC)/Ras/Raf/MAP kinase pathways (van Leeuwen and Samelson, 1999).


Rao A., Luo,C. and Hogan,P.G. (1997) Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol., 15, 707–747.

van Leeuwen J.E. and Samelson,L.E. (1999) T cell antigen-receptor signal transduction. Curr. Opin. Immunol., 11, 242–248.

Anmerkungen

Patchwork aus wortwörtlich übernommenen Texten, ohne dass die Übernahmen gekennzeichnet worden wären. Die angegebenen Literaturstellen stimmen ebenfalls überein.

"Macian et al., 2000" wird im Literaturverzeichnis von Aa nicht aufgeschlüsselt.

Sichter
(Graf Isolan)

[4.] Analyse:Aa/Fragment 009 04 - Diskussion
Bearbeitet: 22. January 2013, 21:20 Graf Isolan
Erstellt: 22. January 2013, 21:07 (Graf Isolan)
Aa, Fragment, SMWFragment, Schlüter et al 1999, Schutzlevel, Verschleierung, ZuSichten

Typus
Verschleierung
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 9, Zeilen: 4-13
Quelle: Schlüter et al 1999
Seite(n): 411, Zeilen: 0
In the case of β-adrenoceptor stimulation, however, RNA elevation is not accompanied by increase in RNA synthesis (Pinson et al., 1993). The mechanism by which β-adrenoceptor stimulation elevates RNA mass seems to be due to a decrease of RNA degradation, which can be mediated by stabilization of RNA by polyamines (Igarashi et al., 1982). Ornithine decarboxylase (ODC) represents the rate-limiting enzyme of polyamine metabolism. ODC is involved in the mechanism by which β-adrenoceptor stimulation elevates cellular RNA mass (Cohen SS., 1998). β-Adrenoceptor-mediated hypertrophy in vivo is also accompanied by induction of ODC (Bartolome et al., 1980).

Bartolome J, Guguenard J, Slotkin TA (1980) Role of ornithine decarboxylase in cardiac growth and hypertrophy. Science 210: 793–794.

Cohen SS, Polyamines and the animal cells. In: Cohen SS, editor, A guide to the polyamines, New York: Oxford University Press, 1998, pp. 184–203.

Igarashi K, Kakegawa T, Hirose S (1982) Stabilization of 30 S ribosomal subunits of Bacillus subtilis W168 by spermidine and magnesium ions. Biochim Biophys Acta 755:326–331.

Pinson A, Schlüter K-D, Zhou XJ, Schwartz P, Kessler-Icekson G and Piper HM (1993) Alpha- and beta-adrenergic stimulation of protein synthesis in cultured adult ventricular cardiomyocytes. J Mol Cell Cardiol 25: 477-490.

In case of β-adrenoceptor stimulation, however, RNA elevation is not accompanied by an increased 14C-uridine incorporation [7]. That let us conclude that the mechanism by which β-adrenoceptor stimulation elevates RNA mass seems to be due to a decrease of RNA degradation. Since polyamines are known to stabilize RNA [9] this may explain the observed elevation of RNA in the absence of elevated RNA synthesis.

Ornithine decarboxylase (ODC) represents the rate limiting enzyme of the polyamine metabolism. An induction of ODC is causally involved in the mechanism by which β-adrenoceptor stimulation elevates cellular RNA mass [10]. β-Adrenoceptor mediated hypertrophy in vivo is, indeed, accompanied by induction of ODC [5].


[5] Bartolome J, Guguenard J, Slotkin TA. Role of ornithine decarboxylase in cardiac growth and hypertrophy. Science 1980;210:793–794.

[7] Pinson A, Schlüter K-D, Zhou XJ, Schwartz P, Kessler-Icekson G, Piper HM. Alpha- and beta-adrenergic stimulation in cultured adult ventricular cardiomyocytes. J Mol Cell Cardiol 1993;25:477–490.

[9] Igarashi K, Kakegawa T, Hirose S. Stabilization of 30 S ribosomal subunits of Bacillus subtilis W168 by spermidine and magnesium ions. Biochim Biophys Acta 1982;755:326–331.

[10] Cohen SS. Polyamines and the animal cells. In: Cohen SS, editor, A guide to the polyamines, New York: Oxford University Press, 1998, pp. 184–203.

Anmerkungen

Wörtliche Übereinstimmung langer Passagen und der Literaturhinweise ohne Kenntlichmachung.

Sichter
(Graf Isolan)

[5.] Analyse:Aa/Fragment 010 03 - Diskussion
Bearbeitet: 8. April 2013, 22:47 Graf Isolan
Erstellt: 8. April 2013, 22:44 (Graf Isolan)
Aa, Fragment, KomplettPlagiat, Permar 1997, SMWFragment, Schutzlevel, ZuSichten

Typus
KomplettPlagiat
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 10, Zeilen: 3-5, 9-11
Quelle: Permar 1997
Seite(n): 1 (Internetversion), Zeilen: 0
Maintenance of the calcium concentration within the SR is accomplished by calcium buffers, calcium channels and calcium pumps.

[...] (Fig: 1.4.1). Cell contraction occurs when calcium ions bind to the troponin/tropomyosin complex, changing its shape so that the binding sites on actin are exposed.

Muscle contraction occurs when calcium ions bind to the troponin/tropomyosin complex, changing its shape so that the binding sites on actin are exposed. [...] Maintenance of the calcium concentration within the SR is accomplished by calcium buffers, calcium channels and calcium pumps (fig 1).
Anmerkungen

Kein Hinweis auf eine Übernahme.

Die Passagen komplementieren exakt die in Aa/Fragment_010_06 erfolgten Übernahmen aus Quelle:Aa/Periasamy_und_Huke_2001. Die Legende zu "(Fig: 1.4.1)" stimmt ebenfalls fast identisch mit der Legende zu "(fig 1)" in Quelle:Aa/Permar 1997 überein (siehe Aa/Fragment_012_01).

Sichter
(Graf Isolan)

[6.] Analyse:Aa/Fragment 010 06 - Diskussion
Bearbeitet: 22. January 2013, 17:07 Graf Isolan
Erstellt: 22. January 2013, 16:21 (Graf Isolan)
Aa, Fragment, Periasamy und Huke 2001, SMWFragment, Schutzlevel, Verschleierung, ZuSichten

Typus
Verschleierung
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 10, Zeilen: 6-9, 11-18
Quelle: Periasamy und Huke 2001
Seite(n): 1053, Zeilen: li.Sp. 8ff - re.Sp. 1-4
Muscle contraction is initiated when Ca2+ enters the cell via L-type Ca2+ channels in the plasmalemma and as a consequence, triggers the release of a much larger amount of Ca2+ from the SR via SR Ca2+ release channels (ryanodine receptor) (Fabiato A, 1983; Bers and Perez-Reyes 1999) (Fig: 1.4.1).[...] The free cytosolic Ca2+ concentration determines the extent of the muscle activation and therefore regulates force development. The SR Ca2+ ATPase (SERCA) pumps the Ca2+ back into the SR and is therefore, responsible for muscle relaxation and for replenishing Ca2+ stores needed for the next contraction (MacLennan DH, 1970) (Fig: 4.1.1). SERCA pump activity is regulated by the small, 52-amino acid phosphoprotein phospholamban (PLB), which in its unphosphorylated state lowers the affinity of SERCA for Ca2+ (Simmermann and Jones, 1998).

Bers DM and Perez-Reyes E (1999) Ca channels in cardiac myocytes: structure and function in Ca2+ influx and intracellular Ca2+ release. Cardiovasc Res 42: 339–360.

Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245: C1–C14.

MacLennan DH (1970) Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem 245: 4508–4518.

Simmermann HK and Jones LR (1998) Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78: 921–947.

Muscle contraction is initiated when Ca2+ enters the cell via L-type Ca2+ channels in the sarcolemma and, as a consequence, triggers the release of a much larger amount of Ca2+ from the SR via SR Ca2+ release channels (ryanodine receptor, RyR).1,2 The free cytosolic Ca2+ concentration determines the extent of muscle activation and therefore regulates force development. The SR Ca2+ ATPase (SERCA) pumps the Ca2+ back into the SR and is therefore responsible for muscle relaxation and for replenishing Ca2+ stores needed for the next contraction.3 SERCA pump activity is regulated by the small 52-aminoacid phosphoprotein phospholamban (PLB), which in its unphosphorylated state lowers the affinity of SERCA for Ca2+.4

1. FABIATO A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 1983; 245: C1–C14.

2. BERS DM, PEREZ-REYES E. Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. Cardiovasc Res 1999; 42: 339–360.

3. MACLENNAN DH. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem 1970; 245: 4508–4518.

4. SIMMERMANN HK, JONES LR. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 1998; 78: 921–947.

Anmerkungen

Inkl. Literaturverweise wörtlich übereinstimmend wird ein geschlossener Abschnitt ohne Kennzeichnung übernommen. Einzige Abänderung: aus "sarcolemma" wird das allgemeinere "plasmalemma". Ansonsten erfolgt durch Aa kein Eingriff in den Textkorpus.

Sichter
(Graf Isolan)

[7.] Analyse:Aa/Fragment 012 01 - Diskussion
Bearbeitet: 8. April 2013, 22:52 Graf Isolan
Erstellt: 8. April 2013, 22:52 (Graf Isolan)
Aa, Fragment, Permar 1997, SMWFragment, Schutzlevel, Verschleierung, ZuSichten

Typus
Verschleierung
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 12, Zeilen: 1-4
Quelle: Permar 1997
Seite(n): 1 (Internetversion), Zeilen: 0
Figure: 1.4.1. Depiction of the calcium release and storage in cardiomyocytes. The calcium ions are actively pumped into the SR by SERCA2a, bound in the lumen by calcium buffer, and released into the cytosol by ryanodine receptors. This movement of calcium ions across the SR membrane is necessary for muscle contraction and relaxation. Figure 1: Depiction of the calcium pool in cardiac sarcoplasmic reticulum. The calcium ions are actively pumped into the SR by SERCA2a, bound in the lumen by calsequestrin, and released into the cytosol by IP3- or ryanodine receptors. This movement of calcium ions across the SR membrane is necessary for muscle contraction and relaxation.
Anmerkungen

Kein Hinweis auf eine Übernahme; vgl. auch Aa/Fragment_010_03.

Sichter
(Graf Isolan)

[8.] Analyse:Aa/Fragment 012 06 - Diskussion
Bearbeitet: 22. January 2013, 13:23 Graf Isolan
Erstellt: 22. January 2013, 11:21 (Graf Isolan)
Aa, Fragment, Periasamy und Huke 2001, SMWFragment, Schutzlevel, Verschleierung, ZuSichten

Typus
Verschleierung
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 12, Zeilen: 6-30
Quelle: Periasamy und Huke 2001
Seite(n): 1053, 1054, Zeilen: 0
A number of studies suggest that alterations in SR Ca2+ handling are a critical feature of the hypertrophied or failing myocardium. Alterations in the expression of different SR proteins and associated Ca2+ transport abnormalities in cardiac hypertrophy and heart failure have been reviewed by Houser et al. (2000). The SERCA2a isoform plays a central role in SR Ca2+ handling required for excitation-contraction coupling in the heart. Moreover, it was shown for mouse, rat and rabbit that the expression of SERCA pump gradually increases during development (Luss et al., 1999; Reed et al., 2000; Chen et al., 2000; Fisher et al., 1992; Gombosova et al., 1998). This increase was accompanied by a shortening of relaxation time in neonatal ventricle (Gombosova et al., 1998). In adult heart SERCA levels are not steady but influenced by aging and fluctuations

in thyroid hormone level. A decrease in content and activity of SERCA was described in experimental models of senescence and in senescent human myocardium (Taffet et al., 1993; Cain et al., 1998). This decrease was associated with a prolonged contraction time and depressed myocardial function. Therefore, several naturally occurring variations in SERCA expression level correlate with the contractile status of the heart. The expression level of SERCA pump protein appears to be a critical determinant of cardiac contractility.

Varying degrees of defects in the SR Ca2+ uptake have been identified in animal models of heart disease and have been shown to correlate with altered contractile function (reviewed in Arai et al., 1994). Studies from many laboratories have shown that the expression level of SERCA is significantly decreased in pressure overload-induced hypertrophy/heart failure (Nagai et al., 1989; Feldman et al., 1993; Matsui et al., 1995; Qi et al., 1997; Aoyagi et al., 1999). In these studies decreased SR calcium transport was observed (Arai et [al., 1994; Feldman et al., 1993; 1993; Matsui et al., 1995; Qi et al., 1997; Kiss et al., 1995).]


Arai M, Matsui H and Periasamy M (1994) Sarcoendoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 74: 555–564.

Aoyagi T, Yonekura K, Eto Y, Matsumoto A, Yokoyama I, Sugiura S, Momomura S, Hirata Y, Baker DL and Periasamy M (1999) The sarcoplasmic reticulum Ca2+-ATPase (SERCA2) gene promoter activity is decreased in response to severe left ventricular pressure-overload hypertrophy in rat hearts. J Mol Cell Cardiol 31: 919–926.

Cain BS, Medlum DR, Joo KS, Wang JF, Meng X, Clefeland JC Jr, Banerjee A and Harken AH (1998) Human SERCA2a levels correlate inversely with age in senescent human myocardium. Am J Coll Cardiol 32: 458–467.

Chen F, Ding S, Lee BS and Wetzel GT (2000) Sarcoplasmic reticulum Ca2+ ATPase and cell contraction in developing rabbit heart. J Mol Cell Cardiol 32: 745–755.

Feldman AM, Weinberg EO, Ray PE and Lorell BH (1993) Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 73: 184– 192.

Fisher DJ, Tate CA and Phillips S (1992) Developmental regulation of the sarcoplasmic reticulum pump in the rabbit heart. Pediatr Res 31: 474–479.

Gombosova I, Boknik P, Kirchhefer U, Knapp J, Luss H, Muller FU, Muller T, Vahlensiek U, Schmitz W, Bodor GS and Neumann J (1998) Postnatal changes in contractile time parameters, calcium regulatory proteins, and phosphatases. Am J Physiol 274: H2123–H2132.

Houser SR, Piacentino V and Weisser J (2000) Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol 32: 1595–1607.

Kiss E, Ball NA, Kranias EG and Walsh RA (1995) Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca2+-ATPase protein levels. Effects on Ca2+transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure. Circ Res 77: 759–764.

Luss I, Boknik P, Jones LR, Kirchhefer U, Knapp J, Linck B, Luss H, Meissner A, Muller FR, Schmitz W, Vahlensieck U and Neumann J (1999) Expression of cardiac calcium regulatory proteins in atrium v ventricle in different species. J Mol Cell Cardiol 31: 1299–1314.

Matsui H, MacLennan DH, Alpert N and Periasamy M (1995) Sarcoplasmic reticulum gene expression in pressure overload-induced cardiac hypertrophy in rabbit. Am J Physiol 268: C252–C258.

Nagai R, Herzberg AZ, Brandl CJ, Fuji J, Tada M, MacLennan DH, Alpert NR and Periasamy M (1989) Regulation of myocardial Ca2+ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86: 2966–2970.

Qi M, Shannon TR, Euler DE, Bers DM and Samarel AM (1997) Downregulation of sarcoplasmic reticulum Ca2+-ATPase during progression of left ventricular hypertrophy. Am J Physiol 272: H2416–H2424.

Reed TD, Babu GJ, Ji Y, Zilberman A, Ver Heyen M, Wuytack F and Periasamy M (2000) The expression of SR calcium transport ATPase and the Na/Ca exchanger are antithetically regulated during mouse cardiac development and in hypo/hyperthyroidism. J Mol Cell Cardiol 32: 453–464.

Taffet GE, Pham TT, Bick DL, Entman ML, Pownall HJ and Bick RJ (1993) The calcium uptake of the rat heart sarcoplasmic reticulum is altered by dietary lipid. J Membr Biol 131: 963–998.

[Seite 1053]

A number of studies, conducted on animal models of heart failure and human failing hearts, suggest that alterations in SR Ca2+ handling are a critical feature of the hypertrophied or failing myocardium. Alterations in the expression of different SR proteins and its associated Ca2+ transport abnormalities in cardiac hypertrophy and heart failure have been recently reviewed by Houser et al.6

[Seite 1054]

The SERCA2a isoform plays a central role in SR Ca2+ handling required for excitation-contraction coupling in the heart. [...] Moreover, it was shown for mouse, rat and rabbit that the expression of SERCA pump gradually increases during development.16,19–22 This increase was again accompanied by a shortening of relaxation time in adult v neonatal ventricle.22 In addition also in adult hearts SERCA levels are not steady, but are influenced by aging and fluctuations in thyroid hormone levels. A decrease in content and activity of SERCA was described in experimental models of senescence and in senescent human myocardium.23,24 This decrease was associated with a prolonged contraction time and depressed myocardial function. [...]

Therefore, several naturally occurring variations in SERCA expression level correlate with the contractile status of the heart. The expression level of SERCA pump protein appears to be a critical determinant of cardiac contractility. [...]

Varying degrees of defects in the SR Ca2+ uptake function have been identified in animal models of heart disease and have been shown to correlate with altered contractile SERCA2a Pump Expression Level in the function (reviewed in Arai et al.7). Studies from many laboratories have shown that the expression level of SERCA is significantly decreased in pressure overload (PO)-induced hypertrophy/heart failure.30–34 In these studies decreased SR calcium transport and formation of the phosphoenzyme intermediate, E-P, was observed.7,31–33,35


6. HOUSER SR, PIACENTINO V, WEISSER J. Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol 2000; 32: 1595–1607.

7. ARAI M, MATSUI H, PERIASAMY M. Sarcoendoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 1994; 74: 555–564.

16. LUSS I, BOKNIK P, JONES LR, KIRCHHEFER U, KNAPP J, LINK B, LUSS H, MEISSNER A, MULLER FR, SCHMITZ W, VAHLENSIECK U, NEUMANN J. Expression of cardiac calcium regulatory proteins in atrium v ventricle in different species. J Mol Cell Cardiol 1999; 31: 1299–1314.

19. REED TD, BABU GJ, JI Y, ZILBERMAN A, VER HEYEN M, WUYTACK F, PERIASAMY M. The expression of SR calcium transport ATPase and the Na/Ca exchanger are antithetically regulated during mouse cardiac development and in hypo/hyperthyroidism. J Mol Cell Cardiol 2000; 32: 453–464.

20. CHEN F, DING S, LEE BS, WETZEL GT. Sarcoplasmic reticulum Ca(2+)ATPase and cell contraction in developing rabbit heart. J Mol Cell Cardiol 2000; 32: 745–755.

21. FISHER DJ, TATE CA, PHILLIPS S. Developmental regulation of the sarcoplasmic reticulum pump in the rabbit heart. Pediatr Res 1992; 31: 474–479.

22. GOMBOSOVA I, BOKNIK P, KIRCHHEFER U, KNAPP J, LUSS H, MULLER FU, MULLER T, VAHLENSIECK U, SCHMITZ W, BODOR GS, NEUMANN J. Postnatal changes in contractile time parameters, calcium regulatory proteins, and phosphatases. Am J Physiol 1998; 274: H2123–H2132.

23. TAFFET GE, PHAM TT, BICK DL, ENTMAN ML, POWNALL HJ, BICK RJ. The calcium uptake of the rat heart sarcoplasmic reticulum is altered by dietary lipid. J Membr Biol 1993; 131: 963–998.

24. CAIN BS, MEDLUM DR, JOO KS, WANG JF, MENG X, CLEFELAND JC JR, BANERJEE A, HARKEN AH. Human SERCA2a levels correlate inversely with age in senescent human myocardium. J Am Cardiol 1998; 32: 458–467.

30. NAGAI R, HERZBERG AZ, BRANDL CJ, FUJI J, TADA M, MACLENNAN DH, ALPERT NR, PERIASAMY M. Regulation of myocardial Ca2+ ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 1989; 86: 2966–2970.

31. FELDMAN AM, WEINBERG EO, RAY PE, LORELL BH. Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 1993; 73: 184–192.

32. MATSUI H, MACLENNAN DH, ALPERT N, PERIASAMY M. Sarcoplasmic reticulum gene expression in pressure overload-induced cardiac hypertrophy in rabbit. Am J Physiol 1995; 268: C252–C258.

33. QI M, SHANNON TR, EULER DE, BERS DM, SAMAREL AM. Downregulation of sarcoplasmic reticulum Ca2+-ATPase during progression of left ventricular hypertrophy. Am J Physiol 1997; 272: H2416–H2424.

34. AOYAGI T, YONEKURA K, ETO Y, MATSUMOTO A, YOKOYAMA I, SUGIURA S, MONOMURA S, HIRATAA Y, BAKER DL, PERIASAMY M. The sarcoplasmic reticulum Ca2+-ATPase (SERCA2) gene promoter activity is decreased in response to severe left ventricular pressure-overload hypertrophy in rat hearts. J Mol Cell Cardiol 1999; 31: 919–926.

35. KISS E, BALL NA, KRANIAS EG,WALSH RA. Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca(2+)-ATPase protein levels. Effects on Ca2+ transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure. Circ Res 1995; 77: 759-764.

Anmerkungen

Ein Zusammenschnitt von kaum veränderten Originalpassagen ohne jede Kennzeichnung. Auch alle Literaturverweise werden übernommen.

Sichter
(Graf Isolan)

[9.] Analyse:Aa/Fragment 013 02 - Diskussion
Bearbeitet: 8. April 2013, 23:30 Graf Isolan
Erstellt: 6. February 2013, 22:07 (Graf Isolan)
Aa, Fragment, SMWFragment, Schutzlevel, Verschleierung, Vlasblom et al 2004, ZuSichten

Typus
Verschleierung
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 13, Zeilen: 2-5, 11-15
Quelle: Vlasblom et al 2004
Seite(n): 537, Zeilen: li.Sp. 8 - re.Sp. 1-10
This down-regulation of SERCA2a may affect calcium handling and contribute to contractile dysfunction, as suggested by the improved contractility of hypertrophied myocardium following SERCA2a protein over expression using transgenic approaches (Muller et al., 2003; Meyer and Dillmann, 1998). [...]

The reduction of myocardial SERCA2a mRNA and protein expression in pathological hypertrophy was attributed to reduced SERCA2a promoter activity (Dumas et al., 1997). This finding was further corroborated by lower activity of a - 1800 bp SERCA2a promoter fragment when transfected in vivo in pressure-overloaded, hypertrophic hearts (Aoyagi et al., 1999; Takizawa et al., 1999).


Aoyagi T, Yonekura K, Eto Y, Matsumoto A, Yokoyama I, Sugiura S, Momomura S, Hirata Y, Baker DL and Periasamy M (1999) The sarcoplasmic reticulum Ca2+-ATPase (SERCA2) gene promoter activity is decreased in response to severe left ventricular pressure-overload hypertrophy in rat hearts. J Mol Cell Cardiol 31:919–926.

Dumas AR, Wisnewsky C, Boheler KR, Keurs HT, Fiszman MY and Schwartz K (1997) The sarco(endo)plasmic reticulum Ca2+-ATPase gene is regulated at the transcriptional level during compensated left ventricular hypertrophy in the rat. Comptes Rendus de l'Academie des Sciences-Series III-Sciences de la Vie. 320:963–969.

Meyer M, and Dillmann WH (1998) Sarcoplasmic reticulum Ca2+-ATPase over expression by adenovirus mediated gene transfer and in transgenic mice. Cardiovasc Res 37: 360–366.

Muller OJ, Lange M, Rattunde H, Lorenzen HP, Muller M, Frey N, et al. (2003) Transgenic rat hearts overexpressing SERCA2a show improved contractility under baseline conditions and pressure overload. Cardiovasc Res 59: 380–389

Takizawa T, Arai M, Yoguchi A, Tomaru K, Kurabayashi M and Nagai R (1999) Transcription of the SERCA2 gene is decreased in pressure-overloaded hearts: a study using in vivo direct gene transfer into living myocardium. J Mol Cell Cardiol 31: 2167–2174.

This downregulation may affect calcium handling and contribute to contractile dysfunction, as suggested by the improved contractility of hypertrophied myocardium following SERCA2a protein overexpression using transgenic approaches [3,4]. The reduction of myocardial SERCA2a mRNA and protein expression in pathological hypertrophy was attributed to reduced SERCA2a promoter activity [5]. This finding was further corroborated by lower activity of a 1800 bp SERCA2a promoter fragment when transfected in vivo in pressure-overloaded, hypertrophic hearts [6,7].

[3] Muller OJ, Lange M, Rattunde H, Lorenzen HP, Muller M, Frey N, et al. Transgenic rat hearts overexpressing SERCA2a show improved contractility under baseline conditions and pressure overload. Cardiovasc Res 2003;59:380–9.

[4] Meyer M, Dillmann WH. Sarcoplasmic reticulum Ca2+-ATPase overexpression by adenovirus mediated gene transfer and in transgenic mice. Cardiovasc Res 1998;37:360–6.

[5] Dumas AR, Wisnewsky C, Boheler KR, Keurs HT, Fiszman MY, Schwartz K. The sarco(endo)plasmic reticulum Ca2+-ATPase gene is regulated at the transcriptional level during compensated left ventricular hypertrophy in the rat. Comptes Rendus de l’Academie des Sciences-Series III-Sciences de la Vie 1997;320:963–9.

[6] Aoyagi T, Yonekura K, Eto Y, Matsumoto A, Yokoyama I, Sugiura S, et al. The sarcoplasmic reticulum Ca2+-ATPase (SERCA2) gene promoter activity is decreased in response to severe left ventricular pressure-overload hypertrophy in rat hearts. J Mol Cell Cardiol 1999;31:919– 26.

[7] Takizawa T, Arai M, Yoguchi A, Tomaru K, Kurabayashi M, Nagai R. Transcription of the SERCA2 gene is decreased in pressure-overloaded hearts: a study using in vivo direct gene transfer into living myocardium. J Mol Cell Cardiol 1999;31:2167–74.

Anmerkungen

Identisch bis hin zu den Literaturverweisen. Übernahmen bleiben ungekennzeichnet.

Fragment komplementiert Aa/Fragment_013_05.

Sichter
(Graf Isolan)

[10.] Analyse:Aa/Fragment 013 05 - Diskussion
Bearbeitet: 8. April 2013, 23:29 Graf Isolan
Erstellt: 8. April 2013, 23:26 (Graf Isolan)
Aa, Fragment, Ito et al 2001, SMWFragment, Schutzlevel, Verschleierung, ZuSichten

Typus
Verschleierung
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 13, Zeilen: 5-10
Quelle: Ito et al 2001
Seite(n): 422, Zeilen: left col. 4-9
Over expression of SERCA2a using an adenoviral gene transfer technique transiently enhances cardiac contractile function and SR Ca2+ uptake (Giordano et al., 1997; Miyamoto et al., 2000). Enhanced contractility has also been reported in SERCA-over expressing transgenic mice not subjected to pathological stimuli (He et al., 1997; Baker et al., 1998).

Giordano FJ, He H, McDonough P, Meyer M, Sayen MR, Dillmann WH (1997) Adenovirus-mediated gene transfer reconstitutes depressed sarcoplasmic reticulum Ca2+-ATPase levels and shortens prolonged cardiac myocyte Ca2+ transients. Circulation 96: 400–403.

Miyamoto MI, Del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, Guerrero JL, Gwathmey JK, Rosenzweig A, Hajjar RJ (2000) Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 97: 793–798.

He H, Giordano FJ, Hilal-Dandan R, Choi D-J, Rockman HA, McDonough PM, Bluhm WF, Meyer M, Sayen MR, Swanson E, Dillmann WH (1997) Over expression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest 100: 380–389.

Baker D, Hashimoto K, Grupp I, Ji Y, Reed T, Loukianov E, Grupp G, Bhagwhat A, Hoit B, Walsh R, Marbán E, Periasamy M (1998) Targeted over expression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res 83: 1205–1214.

We and others have reported that overexpression of SERCA2a using an adenoviral gene transfer technique transiently enhances cardiac contractile function and SR Ca2+ uptake.3,4 Enhanced contractility has also been reported in otherwise normal TG mice not subjected to pathological stimuli.5,6

3. Giordano FJ, He H, McDonough P, Meyer M, Sayen MR, Dillmann WH. Adenovirus-mediated gene transfer reconstitutes depressed sarcoplasmic reticulum Ca2+-ATPase levels and shortens prolonged cardiac myocyte Ca2+ transients. Circulation. 1997;96:400–403.

4. Miyamoto MI, Del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, Guerrero JL, Gwathmey JK, Rosenzweig A, Hajjar RJ. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci U S A. 2000;97:793–798.

5. He H, Giordano FJ, Hilal-Dandan R, Choi D-J, Rockman HA, McDonough PM, Bluhm WF, Meyer M, Sayen R, Swanson E, Dillmann WH. Overexpression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest. 1997;100:380 –389.

6. Baker D, Hashimoto K, Grupp I, Ji Y, Reed T, Loukianov E, Grupp G, Bhagwhat A, Hoit B, Walsh R, Marbán E, Periasamy M. Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res. 1998;83: 1205–1214.

Anmerkungen

Trotz wörtlicher Übereinstimmung (bis hin zu den Literaturverweisen) kein Hinweis auf eine Übernahme.

Fragment komplementiert Aa/Fragment_013_02.

Sichter
(Graf Isolan)

[11.] Analyse:Aa/Fragment 013 17 - Diskussion
Bearbeitet: 6. February 2013, 23:11 Graf Isolan
Erstellt: 6. February 2013, 22:23 (Graf Isolan)
Aa, Fragment, SMWFragment, Schutzlevel, Verschleierung, Vlasblom et al 2004, ZuSichten

Typus
Verschleierung
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 13, Zeilen: 17-22
Quelle: Vlasblom et al 2004
Seite(n): 537, 538, 543, Zeilen: S.537,24-25 und S.538, li.Sp. 19-22 und S.543, re.Sp. 17-20
In myocardial hypertrophy induced by calcineurin over expression, both a fall in SERCA2a mRNA (Molkentin et al 1998) and a rise in SERCA2a protein (Chu et al., 2002) have been observed. In neonatal cardiomyocytes an up-regulation of SERCA2a mRNA expression was found in absence of contractile activity. This is likely due to calcineurin signaling and synergistic stimulation of the SERCA2a promoter by NFATc4 and MEF2c.

Chu G, Carr AN, Young KB, Lester JW, Yatani A, Sanbe A, et al. (2002) Enhanced myocyte contractility and Ca2+ handling in a calcineurin transgenic model of heart failure. Cardiovasc. Res 54: 105–116.

Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR and Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93: 215-228.

[Seite 537]

Conclusion: Following contractile arrest with BDM, upregulation of SERCA2a mRNA expression by CN/CAMK-II signaling becomes evident.

[Seite 538]

In myocardial hypertrophy induced by CN overexpression, both a fall in SERCA2a mRNA [12] and a rise in SERCA2a protein [16] have been observed.

[Seite 543]

5. Conclusions

[...] Both CN and CAMK-II pathways are involved in the calcium-dependent upregulation, most likely due to synergistic stimulation of the SERCA2a promoter by NFATc4 and MEF2c.


[12] Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998;93:215–28.

[16] Chu G, Carr AN, Young KB, Lester JW, Yatani A, Sanbe A, et al. Enhanced myocyte contractility and Ca2+ handling in a calcineurin transgenic model of heart failure. Cardiovasc Res 2002;54:105– 16.

Anmerkungen

Patchwork: vielfach identisch bis hin zu den Literaturverweisen. Übernahmen bleiben ungekennzeichnet.

Sichter
(Graf Isolan)


Fragmente (Verdächtig / Keine Wertung)

1 Fragment

[1.] Analyse:Aa/Fragment 009 25 - Diskussion
Bearbeitet: 22. January 2013, 17:15 Graf Isolan
Erstellt: 22. January 2013, 17:05 (Graf Isolan)
Aa, Fragment, KeineWertung, Periasamy und Huke 2001, SMWFragment, Schutzlevel, ZuSichten

Typus
KeineWertung
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 9, Zeilen: 25-27
Quelle: Periasamy und Huke 2001
Seite(n): 1053, Zeilen: li.Sp 6-8
A regulated release and uptake of intracellular Ca2+ between sarcoplasmic reticulum (SR) and cytoplasm tightly controls the contraction and relaxation cycle of the heart. A regulated release and uptake of intracellular Ca2+ between SR and cytoplasm tightly controls the contraction–relaxation cycle of the heart.
Anmerkungen

Beginn der wortwörtlichen Übernahme eines zusammenhängenden Abschnitts aus Periasamy und huke (2001), welcher in Aa/Fragment_010_06 nahtlos fortgeführt wird. Kein Hinweis auf eine Übernahme.

Sichter
(Graf Isolan)


Fragmente (Kein Plagiat)

Kein Fragment



Fragmente (Verwaist)

1 Fragment

[1.] Analyse:Aa/Fragment 027 10 - Diskussion
Bearbeitet: 23. January 2013, 01:13 Graf Isolan
Erstellt: 22. January 2013, 21:43 (Graf Isolan)
Aa, Fragment, SMWFragment, Schlüter et al 1999, Schutzlevel, Unfertig, Verschleierung

Typus
Verschleierung
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 27, Zeilen: 10-18, 21-26
Quelle: Schlüter et al 1999
Seite(n): 411-412, Zeilen: 0
Incorporation of phenylalanine into cells was analysed by exposing cultures to 14C-phenylalanine for 24 hrs and determining the incorporation of radioactivity into the acid-insoluble cell mass. Non-radioactive phenylalanine (0.3mM) was added to the medium to minimize variations in the specific activity of the precursor pool responsible for protein synthesis.

Experiments were terminated by removal of the medium from the cultures. Cells were washed three times with 1 ml of ice-cold PBS. Subsequently, 1 ml of ice-cold 10% (wt/vol) trichloroacetic acid (TCA) was added. Protein precipitation was performed overnight at 4°C. [...] Radioactivity in this acid fraction presented the intracellular precursor pool. The dishes were then washed twice with 1 ml of ice-cold 10% (wt/vol) trichloroacetic acid and a third time with 1 ml of ice-cold PBS. The remaining precipitate in the culture dishes was dissolved in 1 ml of 1N NaOH/0.01% (wt/vol) SDS by incubation at 37°C overnight.

[Seite 411]

Incorporation of phenylalanine into cells was determined by exposing cultures to L-14C-phenylalanine (0.1 μCi/ml) for 24 h and determination of the incorporation of radioactivity into acid-insoluble cell mass as described before [7].

[Seite 412]

[...] Nonradioactive phenylalanine (0.3 mmol/ l) was added to the medium to minimize variations in the specific activity of the precursor pool responsible for protein synthesis. In incorporation studies, experiments were terminated by removal of the supernatant medium from the cultures and washed three times with ice-cold phosphate-buffered saline (PBS; composition in mmol/l: 1.5 KH2PO4 , 137 NaCl, 2.7 KCl, and 1.0 Na2HPO4, pH 7.4). Subsequently, ice-cold 10% (w/v) trichloroacetic acid was added. After storage overnight at 4°C, the acid was removed from the dishes. Radioactivity contained in this acid fraction was taken to present the intracellular precursor pool. The dishes were then washed twice with ice-cold PBS. The remaining precipitate on the culture dishes was dissolved in 1 M NaOH–0.01% (w/v) sodium dodecylsulphate (S.D.S) by an incubation for 2 h at 37°C.

Anmerkungen

--

Sichter
(Graf Isolan)


Quellen

Quelle Autor Titel Verlag Jahr Lit.-V. FN
Aa/Ito et al 2001 Kenta Ito, Xinhua Yan, Xin Feng, Warren J. Manning, Wolfgang H. Dillmann, Beverly H. Lorell Transgenic Expression of Sarcoplasmic Reticulum Ca2+ ATPase Modifies the Transition From Hypertrophy to Early Heart Failure 2001 ja ja
Aa/Macian et al 2000 Fernando Macián, Carmen García-Rodríguez, Anjana Rao Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun 2000 ja ja
Aa/Molkentin et al 1998 Jeffery D. Molkentin, Jian-Rong Lu, Christopher L. Antos, Bruce Markham, James Richardson, Jeffrey Robbins, Stephen R. Grant, Eric N. Olson A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy Cell Press 1998 ja nein
Aa/Periasamy und Huke 2001 Muthu Periasamy und Sabine Huke SERCA Pump Level is a Critical Determinant of Ca2+ Homeostasis and Cardiac Contractility 2001 ja nein
Aa/Permar 1997 Sallie R. Permar The developmental expression of calsequestrin, a calcium buffering protein, in the sarcoplasmic reticulum of chicken hearts. 1997 no no
Aa/Schlüter et al 1999 Klaus-Dieter Schlüter, Karen Frischkopf, Markus Flesch, Stephan Rosenkranz, Gerhild Taimor, Hans Michael Piper Central role for ornithine decarboxylase in β-adrenoceptor mediated hypertrophy 1999 nein nein
Aa/Vlasblom et al 2004 Ronald Vlasblom, Alice Muller, René J.P. Musters, Marian J. Zuidwijk, Cornelis van Hardeveld, Walter J. Paulus, Warner S. Simonides Contractile arrest reveals calcium-dependent stimulation of SERCA2a mRNA expression in cultured ventricular cardiomyocytes 2004 ja nein
Aa/van Rooij et al 2002 Eva van Rooij, Pieter A. Doevendans, Chiel C. de Theije, Fawzi A. Babiker, Jeffery D. Molkentin, Leon J. De Windt Requirement of Nuclear Factor of Activated T-cells in Calcineurin-mediated Cardiomyocyte Hypertrophy 2002 ja ja


Übersicht

Typus Gesichtet ZuSichten Unfertig Σ
KP0101
VS0819
ÜP0000
BO0202
KW0101
KeinP0000
Σ012113

Sitemap

Kategorie:Aa




Wichtige Seiten

Befunde

Alle Fragmente

Unfragmentierte Fundstellen

Auch bei Fandom

Zufälliges Wiki