Fandom

VroniPlag Wiki

Analyse:Ftp/Fragment 014 01

31.381Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.


Typus
Verschleierung
Bearbeiter
SleepyHollow02
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 14, Zeilen: 1 ff. (kpl.)
Quelle: Katzaki 2009
Seite(n): 19 f., Zeilen: 19: 22 ff.; 20: 1 ff.
[Both BAC and] oligonucleotide arrays have been used successfully to detect copy number changes in patients with ID/MCA and autism. A number of different array design approaches have been taken for diagnostic purposes. A targeted array is one that contains specific regions of the genome, such as the subtelomeres and those responsible for known microdeletion/microduplication syndromes, but does not have probes that span the whole genome. [11] [12] [13] This type of array was initially used for clinical applications in postnatal specimens but has also been implemented for prenatal specimens with an abnormal ultrasound finding or for general screening purposes. [14] [15] [16] A whole genome or tiling path array offers full genome coverage with a resolution that is dependent on the spacing of the probes. For clinical testing the resolution generally involves a spacing of 50 Kb to 1 Mb between adjacent probes on the array often with additional coverage at the subtelomeric regions. [17] [18] The enhanced coverage of whole genome arrays identifies an additional 5% of abnormalities when compared to a targeted array. [19] [20] For research purposes, very high density oligonucleotide whole genome arrays and region specific custom arrays have been instrumental in defining new syndromes, detecting target gene deletions and characterizing breakpoint regions. [21] [22] [23]

11. Bejjani, B.A., et al., Use of targeted array-based CGH for the clinical diagnosis of chromosomal imbalance: is less more? Am J Med Genet A, 2005. 134(3): p. 259-67.

12. Bejjani, B.A. and L.G. Shaffer, Application of array-based comparative genomic hybridization to clinical diagnostics. J Mol Diagn, 2006. 8(5): p. 528-33.

13. Shaffer, L.G., Risk estimates for uniparental disomy following prenatal detection of a nonhomologous Robertsonian translocation. Prenat Diagn, 2006. 26(4): p. 303-7.

14. Le Caignec, C., et al., Detection of genomic imbalances by array based comparative genomic hybridisation in fetuses with multiple malformations. J Med Genet, 2005. 42(2): p. 121-8.

15. Sahoo, T., et al., Microarray based comparative genomic hybridization testing in deletion bearing patients with Angelman syndrome: genotype-phenotype correlations. J Med Genet, 2006. 43(6): p. 512-6.

16. Kitsiou-Tzeli, S., et al., Prenatal diagnosis of a de novo partial trisomy 10p12.1-12.2 pter originating from an unbalanced translocation onto 15qter and confirmed with array CGH. Prenat Diagn, 2008. 28(8): p. 770-2.

17. Veltman, J.A. and B.B. de Vries, Diagnostic genome profiling: unbiased whole genome or targeted analysis? J Mol Diagn, 2006. 8(5): p. 534-7; discussion 537-9.

18. Toruner, G.A., et al., An oligonucleotide based array-CGH system for detection of genome wide copy number changes including subtelomeric regions for genetic evaluation of mental retardation. Am J Med Genet A, 2007. 143A(8): p. 824-9.

19. Baldwin, E.L., et al., Enhanced detection of clinically relevant genomic imbalances using a targeted plus whole genome oligonucleotide microarray. Genet Med, 2008. 10(6): p. 415-29.

20. Veltman, J.A. and B.B. de Vries, Whole-genome array comparative genome hybridization: the preferred diagnostic choice in postnatal clinical cytogenetics. J Mol Diagn, 2007. 9(2): p. 277.

21. Selzer, R.R., et al., Analysis of chromosome breakpoints in neuroblastoma at subkilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer, 2005. 44(3): p. 305-19.

22. Urban, A.E., et al., High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. Proc Natl Acad Sci U S A, 2006. 103(12): p. 4534-9.

23. Wong, L.J., et al., Utility of oligonucleotide array-based comparative genomic hybridization for detection of target gene deletions. Clin Chem, 2008. 54(7): p. 1141-8.

Both BAC and oligonucleotide arrays have been used successfully to detect copy number changes in patients with MR/MCA and autism. A number of different array design approaches have been taken for diagnostic purposes. A targeted array is one that contains specific regions of the genome, such as the subtelomeres and those responsible for known microdeletion/microduplication syndromes, but does not have probes that span the whole genome.11-13 This type of

[page 20:]

array was initially used for clinical applications in postnatal specimens but has also been implemented for prenatal specimens with an abnormal ultrasound finding or for general screening purposes.14-16 A whole genome or tiling path array offers full genome coverage with a resolution that is dependent on the spacing of the probes. For clinical testing the resolution generally involves a spacing of 50 kb to 1 Mb between adjacent probes on the array often with additional coverage at the subtelomeric regions.17-19 The enhanced coverage of whole genome arrays identifies an additional 5% of abnormalities when compared to a targeted array.19,20 For research purposes, very high density oligonucleotide whole genome arrays and region specific custom arrays have been instrumental in defining new syndromes, detecting target gene deletions and characterizing breakpoint regions.3,21-24


3 Edelmann L, Hirschhorn K: Clinical utility of array CGH for the detection of chromosomal imbalances associated with mental retardation and multiple congenital anomalies. Ann N Y Acad Sci 2009; 1151: 157-166.

11 Bejjani BA, Saleki R, Ballif BC et al: Use of targeted array-based CGH for the clinical diagnosis of chromosomal imbalance: is less more? Am J Med Genet A 2005; 134: 259-267.

12 Bejjani BA, Shaffer LG: Application of array-based comparative genomic hybridization to clinical diagnostics. J Mol Diagn 2006; 8: 528-533.

13 Shaffer LG, Kashork CD, Saleki R et al: Targeted genomic microarray analysis for identification of chromosome abnormalities in 1500 consecutive clinical cases. J Pediatr 2006; 149: 98-102.

14 Le Caignec C, Boceno M, Saugier-Veber P et al: Detection of genomic imbalances by array based comparative genomic hybridisation in fetuses with multiple malformations. J Med Genet 2005; 42: 121-128.

15 Sahoo T, Cheung SW, Ward P et al: Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization. Genet Med 2006; 8: 719-727.

16 Kitsiou-Tzeli S, Sismani C, Karkaletsi M et al: Prenatal diagnosis of a de novo partial trisomy 10p12.1-12.2 pter originating from an unbalanced translocation onto 15qter and confirmed with array CGH. Prenat Diagn 2008; 28: 770-772.

17 Veltman JA, de Vries BB: Diagnostic genome profiling: unbiased whole genome or targeted analysis? J Mol Diagn 2006; 8: 534-537; discussion 537-539.

18 Toruner GA, Streck DL, Schwalb MN, Dermody JJ: An oligonucleotide based array-CGH system for detection of genome wide copy number changes including subtelomeric regions for genetic evaluation of mental retardation. Am J Med Genet A 2007; 143A: 824-829.

19 Baldwin EL, Lee JY, Blake DM et al: Enhanced detection of clinically relevant genomic imbalances using a targeted plus whole genome oligonucleotide microarray. Genet Med 2008; 10: 415-429.

20 Veltman JA, de Vries BB: Whole-genome array comparative genome hybridization: the preferred diagnostic choice in postnatal clinical cytogenetics. J Mol Diagn 2007; 9: 277.

21 Selzer RR, Richmond TA, Pofahl NJ et al: Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer 2005; 44: 305-319.

22 Urban AE, Korbel JO, Selzer R et al: High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. Proc Natl Acad Sci U S A 2006; 103: 4534-4539.

23 Wong LJ, Dimmock D, Geraghty MT et al: Utility of oligonucleotide arraybased comparative genomic hybridization for detection of target gene deletions. Clin Chem 2008; 54: 1141-1148.

24 Balikova I, Lehesjoki AE, de Ravel TJ et al: Deletions in the VPS13B (COH1) gene as a cause of Cohen syndrome. Hum Mutat 2009.

Anmerkungen

Kein Hinweis auf die Quelle.

Sichter
(SleepyHollow02)

Auch bei Fandom

Zufälliges Wiki