Fandom

VroniPlag Wiki

Analyse:Vst

31.268Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.

Fragmente (Plagiat, gesichtet)

3 Fragmente

[1.] Analyse:Vst/Fragment 005 01 - Diskussion
Bearbeitet: 14. April 2014, 16:45 Schumann
Erstellt: 21. March 2014, 12:15 (Graf Isolan)
BauernOpfer, Fragment, Gesichtet, SMWFragment, Schanz and Diebels 2003, Schutzlevel, Vst

Typus
BauernOpfer
Bearbeiter
Graf Isolan
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 5, Zeilen: 1-18
Quelle: Schanz and Diebels 2003
Seite(n): 214, Zeilen: 1-17, 21-23
[Based on the work of von Terzaghi, a theoretical] description of porous materials saturated by a viscous fluid was presented by Biot [16, 15]. This was the starting point of Biot’s theory of poroelasticity. In the following years, Biot extended his theory to anisotropic cases [17] and also to poroviscoelasticity [18]. The dynamic extension of Biot’s theory was published in 1956 in two papers, one covering the low frequency range [20] and the other one covering the high frequency range [21]. One of the significant findings in these papers was the identification of three different wave types for a 3-d continuum, namely two compressional waves and one shear wave. The additional compressional wave is also known as the slow wave and has been experimentally confirmed [124]. In Biot’s original approach, a fully saturated material was assumed. The extension to a nearly saturated (partially saturated) poroelastic solid was presented by Vardoulakis and Beskos [162].

Based on the work of Fillunger [77], a different approach, the Theory of Porous Media has been developed. This theory is based on the axioms of continuum theories of mixtures [161, 24] extended by the concept of volume fractions by Bowen [25, 26] and by the research group of Ehlers [54, 63, 65, 64, 57]. Thus, the Theory of Porous Media proceeds from the assumption of immiscible and superimposed continua with internal interactions. Remarks on the equivalence of both theories are found in the work of Bowen [26], Ehlers and Kubik [66] and Schanz and Diebels [149]. In all these publications, linear versions of both theories are compared and, finally, the equivalence can only be shown if Biot’s apparent mass density is set to zero.


[15] Biot, M.A.: Consolidation settlement under a rectangular load distribution. Journal of Applied Physics, 12, 426–430, 1941.

[16] Biot, M.A.: General Theory of Three-Dimensional Consolidation. Journal of Applied Physics, 12, 155–164, 1941.

[17] Biot, M.A.: Theory of Elasticity and Consolidation for a Porous Anisotropic Solid. Journal of Applied Physics, 26, 182–185, 1955.

[18] Biot, M.A.: Theory of Deformation of a Porous Viscoelastic Anisotropic Solid. Journal of Applied Physics, 27(5), 459–467, 1956.

[20] Biot, M.A.: Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid.I. Low-Frequency Range. Journal of the Acoustical Society of America, 28(2), 168–178, 1956.

[21] Biot, M.A.: Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid.II. Higher Frequency Range. Journal of the Acoustical Society of America, 28(2), 179–191, 1956.

[24] Bowen, R.M.: Theory of Mixtures. In Continuum Physics. (Eringen, A.C., Ed.), Vol. III, Acadenic Press, New York, 1–127, 1976.

[25] Bowen, R.M.: Incompressible Porous Media Models by use of the Theory of Mixtures. International Journal of Engineering Science, 18, 1129–1148, 1980.

[26] Bowen, R.M.: Compressible Porous Media Models by use of the Theory of Mixtures. International Journal of Engineering Science, 20(6), 697–735, 1982.

[54] de Boer, R.; Ehlers, W.: Theorie der Mehrkomponentenkontinua mit Anwendungen auf bodenmechanische Probleme, Teil I. Forschungsbericht aus dem Fachbereich Bauwesen 40, Universität - GH Essen, 1986.

[57] Diebels, S.: Mikropolare Zweiphasenmodelle: Formulierung auf der Basis der Theorie Poröser Medien. Bericht Nr. II-4, Universität Stuttgart, Institut für Mechanik, Lehrstuhl II, 2000.

[63] Ehlers, W.: Poröse Medien – ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Forschungsbericht aus dem Fachbereich Bauwesen 47, Universität - GH Essen, 1989.

[64] Ehlers,W.: Compressible, Incompressible and Hybrid Two-phase Models in Porous Media Theories. ASME: AMD-Vol., 158, 25–38, 1993.

[65] Ehlers, W.: Constitutive Equations for Granular Materials in Geomechanical Context. In Continuum Mechanics in Environmental Sciences and Geophysics. (Hutter, K., Ed.), CISM Courses and Lecture Notes, No. 337, Springer-Verlag, Wien, 313–402, 1993.

[66] Ehlers, W.; Kubik, J.: On Finite Dynamic Equations for Fluid-Saturated Porous Media. Acta Mechanica, 105, 101–117, 1994.

[77] Fillunger, P.: Der Auftrieb von Talsperren, Teil I-III. Österr. Wochenschrift für den öffentlichen Baudienst, 532–570, 1913.

[124] Plona, T.J.: Observation of a Second Bulk Compressional Wave in Porous Medium at Ultrasonic Frequencies. Applied Physics Letters, 36(4), 259–261, 1980.

[149] Schanz, M.; Diebels, S.: A Comparative Study of Biot’s Theory and the Linear Theory of Porous Media for Wave Propagation Problems. Acta Mechanica, 161(3-4), 213–235, 2003.

[161] Truesdell, C.; Toupin, R.A.: The Classical Field Theories. In Handbuch der Physik. (Flügge, S., Ed.), Vol. III/1, Springer-Verlag, Berlin, 226–793, 1960.

[162] Vardoulakis, I.; Beskos, D.E.: Dynamic Behavior of Nearly Saturated Porous Media. Mechanics of Composite Materials, 5, 87–108, 1986.

Based on the work of von Terzaghi, a theoretical description of porous materials saturated by a viscous fluid was presented by Biot [6]. This was the starting point of the theory of poroelasticity or the BT. In the following years, Biot extended his theory to anisotropic cases [7] and also to poroviscoelasticity [8]. The dynamic extension of Biot’s theory was published in 1956 in two papers, one covering the low frequency range [9] and the other one covering the high frequency range [10]. One of the significant findings in these papers was the identification of three different wave types for a 3-d continuum, namely two compressional waves and one shear wave. The additional compressional wave is also known as the slow wave and has been experimentally confirmed [11]. In Biot’s original approach a fully saturated material was assumed. The extension to a nearly saturated (partially saturated) poroelastic solid was presented by Vardoulakis and Beskos [12].

On the other hand, based on the work of Fillunger, a different approach, namely the Theory of Porous Media, has been developed. This theory is based on the axioms of continuum theories of mixtures [13], [14] extended by the concept of volume fractions by Bowen [15], [16] and others [17]–[21]. Thus, the TPM proceeds from the assumption of immiscible and superimposed continua with internal interactions.

Remarks on the equivalence of both theories are found in the work of Bowen [16]. [...] Furthermore, Ehlers and Kubik [22] compared and discussed the linear versions of both theories claiming that they are equivalent if Biot’s apparent mass density is assumed to be zero.


[4] Fillunger, P.: Der Auftrieb von Talsperren, Teil I-III. Österr. Wochenschrift für den öffentlichen Baudienst. 7, 532–510 (1913).

[6] Biot, M. A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941).

[7] Biot, M. A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (l955).

[8] Biot, M. A.: Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27, 459–467 (1956).

[9] Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lowfrequency range. J. Acoust. Soc. America 28, 168–178 (1956).

[10] Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. America 28, 179–191 (1956).

[11] Plona, T. J.: Observation of a second bulk compressional wave in porous medium at ultrasonic frequencies. Appl. Phys. Letters 36, 259–261 (1980).

[12] Vardoulakis, I., Beskos, D. E.: Dynamic behavior of nearly saturated porous media. Mech. Comp. Mater. 5, 87–108 (1986).

[13] Truesdell, C., Toupin, R. A.: The classical field theories. In: Handbuch der Physik (Flügge, S., ed.), vol. III/1, pp. 226–793. Berlin: Springer 1960.

[14] Bowen, R. M.: Theory of mixtures. In: Continuum physics (Eringen, A. C., ed.), vol. III, pp. 1–127. New York: Academic press 1976.

[15] Bowen, R. M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Engng Sci. 18, 1129–1148 (1980).

[16] Bowen, R. M.: Compressible porous media models by use of the theory of mixtures. Int. J. Engng Sci. 20, 697–735 (1982).

[17] de Boer, R., Ehlers, W.: Theorie der Mehrkomponentenkontinua mit Anwendungen auf bodenmechanische Probleme, Teil I. Forschungsbericht aus dem Fachbereich Bauwesen 40, Universität – GH Essen, 1986.

[18] Ehlers, W.: Poröse Medien – ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Forschungsbericht aus dem Fachbereich Bauwesen 47, Universität – GH Essen, 1989.

[19] Ehlers, W.: Constitutive equations for granular materials in geomechanical context. In: Continuum mechanics in environmental sciences and geophysics (Hutter, K., ed.). CISM Courses and Lecture Notes, No. 337, pp. 313–402 Wien: Springer 1993.

[20] Ehlers, W.: Compressible, incompressible and hybrid two-phase models in porous media theories. ASME: AMD-Vol. 158, 25–38 (1993).

[21] Diebels, S.: Mikropolare Zweiphasenmodelle: Formulierung auf der Basis der Theorie Poröser Medien. Bericht Nr. II-4, Universität Stuttgart, Institut für Mechanik, Lehrstuhl II, 2000.

[22] Ehlers, W., Kubik, J.: On finite dynamic equations for fluid-saturated porous media. Acta Mech. 105, 101–117 (1994).

Anmerkungen

Mostly identical with all but one of the literary references just having been copied. Nothing has been marked as a citation. The source is mentioned in passing.

Sichter
(Graf Isolan) Schumann

[2.] Analyse:Vst/Fragment 005 22 - Diskussion
Bearbeitet: 14. April 2014, 17:09 Schumann
Erstellt: 21. March 2014, 14:12 (Graf Isolan)
Fragment, Gesichtet, Pryl 2005, SMWFragment, Schutzlevel, Verschleierung, Vst

Typus
Verschleierung
Bearbeiter
Graf Isolan
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 5, Zeilen: 22-35
Quelle: Pryl 2005
Seite(n): 2, Zeilen: 31-42
In the following, a two-phase material consisting of an elastic solid skeleton and an interstitial fluid is assumed. Furthermore, the assumption of full saturation is made, e.g., the whole pore space is filled with the fluid. The balance laws and the constitutive equations contains in the most general case the variables of solid and fluid displacements and pore pressure. In most cases, these variables are modified introducing the seepage velocity, describing the fluid movement relative to the solid frame, instead of the absolute fluid displacements. The governing equations are then usually formulated using one of two different sets of unknowns: either the pore pressure is eliminated and the solid displacements and seepage velocity remain, denoted as usi-ufi-formulation in the following, or the seepage velocity is eliminated, and the solid displacements and pore pressure are selected as unknowns. Bonnet [22] has shown that the latter choice is sufficient to describe a poroelastic continuum. This reduction of unknowns, denoted as usi-p-formulation, is only possible in a transformed domain, e.g., in the Laplace domain. Zienkiewicz [187] introduced a simplified poroelastic model to make a usi-p-formulation in time domain possible.

[22] Bonnet, G.: Basic Singular Solutions for a Poroelastic Medium in the Dynamic Range. Journal of the Acoustical Society of America, 82(5), 1758–1762, 1987.

[187] Zienkiewiecz, O.C.; Chang, C.; Bettess, P.: Drained undrained consolidating and dynamic behavior [sic] assumptions in soils. Géotechnique, 30(4), 385 – 395, 1980.

In the following, a two-phase material consisting of an elastic solid skeleton and an interstitial fluid is assumed. Furthermore, the assumption of full saturation is made, e.g., the whole pore space is filled with the fluid. The balance laws and the constitutive equations contain the variables solid and fluid displacements and pore pressure. In most cases these variables are modified, introducing the seepage velocity, describing the fluid movement relative to the solid frame, instead of the absolute fluid displacements. The governing equations are then usually formulated using one of two different sets of unknowns: either the pore pressure is eliminated and the solid displacements and seepage velocity remain, which is denoted as usi-ufi-formulation in the following, or the seepage velocity is eliminated, and the solid displacements and pore pressure are selected as unknowns. Bonnet [14] has shown that the latter choice is sufficient to describe a poroelastic continuum. This reduction of unknowns, denoted as usi-p-formulation, is only possible in a transformed domain, e.g., in the Laplace domain. Zienkiewicz [99] introduced a simplified poroelastic model to make a usi-p-formulation in time domain possible.

[14] Bonnet, G.: Basic Singular Solutions for a Poroelastic Medium in the Dynamic Range. Journal of the Acoustical Society of America, 82(5), 1758–1762, 1987.

[99] Zienkiewicz, O.C.; Chang, C.T.; Bettess, P.: Drained, Undrained, Consolidating and Dynamic Behaviour Assumptions in soils. Geophysics [sic], 30(4), 385–395, 1980.

Anmerkungen

Nearly identical with nothing having been marked as a citation.

Sichter
(Graf Isolan) Schumann

[3.] Analyse:Vst/Fragment 026 11 - Diskussion
Bearbeitet: 17. July 2014, 18:10 Schumann
Erstellt: 23. March 2014, 13:22 (Graf Isolan)
Fragment, Gesichtet, KomplettPlagiat, SMWFragment, Schanz 2001, Schutzlevel, Vst

Typus
KomplettPlagiat
Bearbeiter
Graf Isolan
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 26, Zeilen: 11-15
Quelle: Schanz 2001
Seite(n): 90, Zeilen: 8-13
When moving y to the boundary Γ to determine the unknown boundary data, it is necessary to know the behavior of the fundamental solutions when r = |yx | tends to zero, i.e., when an integration point x approaches a collocation point y. Six of the eight fundamental solutions, four in G and four calculated by equations (3.21), are singular. The order of their singularity can be determined by series representations with respect to the variable r. Singular integral equation. When moving y to the boundary Γ to determine the unknown boundary data, it is necessary to know the behavior of the fundamental solutions when r = |yx| tends to zero, i.e., when an integration point x approaches a collocation point y. Six of the eight fundamental solutions, four in G and four calculated by equations (6.40), are singular. The order of their singularity can be determined by series representations.
Anmerkungen

Identical, with nothing of it being marked as a citation. No source given.

Sichter
(Graf Isolan) Schumann


Fragmente (Plagiat, ungesichtet)

Kein Fragment



Fragmente (Verdächtig / Keine Wertung)

Kein Fragment



Fragmente (Kein Plagiat)

Kein Fragment



Fragmente (Verwaist)

Kein Fragment



Quellen

Quelle Autor Titel Verlag Jahr Lit.-V. FN
Vst/Pryl 2005 Dobromil Pryl Influences of Poroelasticity on Wave Propagation: A Time Stepping Boundary Element Formulation 2005 ja ja
Vst/Schanz 2001 Martin Schanz Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach Springer 2001 ja ja
Vst/Schanz and Diebels 2003 Martin Schanz, Stefan Diebels A comparative study of Biot’s theory and the linear Theory of Porous Media for wave propagation problems 2003 ja ja


Übersicht

Typus Gesichtet ZuSichten Unfertig Σ
KP1001
VS1001
ÜP0000
BO1001
KW0000
KeinP0000
Σ3003

Sitemap

Kategorie:Vst




Wichtige Seiten

Befunde

Alle Fragmente

Unfragmentierte Fundstellen

Auch bei Fandom

Zufälliges Wiki