Fandom

VroniPlag Wiki

Dsa/032

< Dsa

31.371Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0 Teilen

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.

Nierenfunktion Kinase-defizienter Mäuse

von Dr. Diana Sandulache

vorherige Seite | zur Übersichtsseite | folgende Seite
Statistik und Sichtungsnachweis dieser Seite findet sich am Artikelende
[1.] Dsa/Fragment 032 00 - Diskussion
Zuletzt bearbeitet: 2016-08-06 20:40:39 WiseWoman
Dsa, Fragment, Gesichtet, SMWFragment, Schutzlevel sysop, Verschleierung, Wikipedia Epithelial sodium channel 2007

Typus
Verschleierung
Bearbeiter
Hindemith
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 32, Zeilen: figure
Quelle: Wikipedia Epithelial sodium channel 2007
Seite(n): 1 (online source), Zeilen: -
Dsa 032a diss.png

Figure nr. 5 - Schematic picture of an ENaC (the second α-subunit is omitted for clarity).

Dsa 032a source.png

schematic picture of an ENaC (the second α-subunit is omitted for clarity).

Anmerkungen

The source is not mentioned, although it clearly has been the basis for the figure in the dissertation.

Acording to [1], the figure is available under the CC BY-SA 3.0 licence, which demands that credit be given to the original creator.

Sichter
(Hindemith), WiseWoman

[2.] Dsa/Fragment 032 01 - Diskussion
Zuletzt bearbeitet: 2016-08-04 21:51:53 WiseWoman
Boini 2006, Dsa, Fragment, Gesichtet, KomplettPlagiat, SMWFragment, Schutzlevel sysop

Typus
KomplettPlagiat
Bearbeiter
Hindemith
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 32, Zeilen: 1-22
Quelle: Boini 2006
Seite(n): 15, 16, Zeilen: 15: 16ff; 16: 18ff
Transepithelial Na+ transport in these segments is accomplished by Na+ entry into the epithelial cells via the epithelial Na+ channel (ENaC) in the luminal membrane and by exit of Na+ through the Na+, K+-ATPase in the basolateral plasma membrane. ENaC represents the rate limiting step in this process and is highly regulated (Kellenberger S. and Schild L., (2002) J Physiol). It is composed of three subunits (α, β and γ) (Canessa CM. et al., (1994) Nature; Lingueglia et al., (1993) FEBS Lett; Lingueglia et al., (1994) J Biol Chem) with a stoichiometry of 2α1β1γ (Firsov et al., (1998) EMBO J), although other stoichiometries have also been proposed (octa- or nonamers) (Eskandari et al., (1999) J Biol Chem; Snyder et al., (1998) J Biol Chem). Its subunits have a similar topology, with two transmembrane domains, one extracellular loop, and two cytoplasmic ends (Renard et al., (1994) J Biol Chem; Canessa CM. et al., (1994) Nature; Snyder et al., (1994) PMID). Each subunit also contains, at its C-terminal end, a PY-motif (P-P-X-Y, where P is a proline, Y a tyrosine, and X any amino acid), which is known as protein: protein interaction motifs that can interact with tryptophan (W)-rich WW domains (Chen HI. and Sudol M., (1995) Proc Natl Acad Sci USA; Staub O. and Rotin D., (1996) Am Physiol Soc).

The importance of these PY-motifs for ENaC regulation has been recognized by the findings that most cases of Liddle’s syndrome, K+-ATPase (Zecevic M. et al., (2004) Pflügers Arch; Setiawan I. et al., (2002) Pflügers Arch) with SGK1 profoundly increases the activity of both Na+- transporting proteins. Likewise, SGK2 and SGK3 stimulate ENaC (Friedrich B. et al., (2003) Pflügers Arch) and Na+- K+-ATPase (Henke G. et al., (2002) Kidney Blood Press Res).

Transepithelial Na+ transport in these segments is accomplished by Na+ entry into the epithelial cells via the epithelial Na+ channel (ENaC) in the luminal membrane and by exit of Na+ through the Na+, K+-ATPase in the basolateral plasma membrane. ENaC represents the rate limiting step in this process and is highly regulated (Kellenberger and Schild 2002). It is composed of three subunits (α, β and γ) (Canessa et al., 1994; Canessa et al., 1994; Lingueglia et al., 1993; Lingueglia et al., 1994) with a stoichiometry of 2α1β1γ (Firsov et al., 1998), although other stoichiometries have also been proposed (octa- or nonamers) (Eskandari et al., 1999; Snyder et al., 1998). Its subunits have a similar topology, with two transmembrane domains, one extracellular loop, and two cytoplasmic ends (Renard et al., 1994; Canessa et al., 1994; Snyder et al., 1994). Each subunit also contains, at its C-terminal end, a PY-motif (P-P-X-Y, where P is a proline, Y a tyrosine, and X any amino acid), which is known as protein:protein interaction motifs that can interact with tryptophan (W)-rich WW domains (Chen and Sudol 1995; Staub and Rotin 1996). The importance of these PY-motifs for ENaC regulation has been recognized by the findings that most cases of Liddle’s syndrome [(Liddle et al., 1963)]

[p. 16]


[...], K+-ATPase (Zecevic et al., 2004; Setiawan et al., 2002) with SGK1 profoundly increases the activity of both Na+-transporting proteins. Likewise, SGK2 and SGK3 stimulate ENaC (Friedrich et al., 2003) and Na+,K+-ATPase (Henke et al., 2002).

Anmerkungen

The source is not mentioned.

Note that the first sentence of the second paragraph makes little sense, as it is a combination of two unrelated half-sentences of the source, the first one ending just at the page break from page 15 to page 16.

Sichter
(Hindemith), WiseWoman


vorherige Seite | zur Übersichtsseite | folgende Seite
Letzte Bearbeitung dieser Seite: durch Benutzer:WiseWoman, Zeitstempel: 20160804195515

Auch bei Fandom

Zufälliges Wiki