Fandom

VroniPlag Wiki

Haw/Fragment 002 01

< Haw

31.385Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0 Teilen

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.


Typus
KomplettPlagiat
Bearbeiter
Hindemith
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 2, Zeilen: 1-6
Quelle: Limbourg et al 2009
Seite(n): 1737, Zeilen: l. Spalte: 19ff
[Arteriogenesis is defined as the enlargement of pre-existing collateral arteries and their remodelling into conductance vessels[8]. This process is driven by an] increased blood flow in collateral arteries leading to an increase in wall tension and fluid shear stress[9-11]. Specific arterial signaling pathways, angiogenic growth factors, as well as resident cells in the vessel wall and circulating cells participate in this complex biological process of luminal expansion and wall growth[12-17]. It is important to note that arteriogenesis is the key mechanism to enhance perfusion and is, thus, critical for the rescue of ischemic organs[18, 19].

8. Schaper, W., Collateral circulation: past and present. Basic Res Cardiol, 2009. 104(1): p. 5-21.

9. Heil, M. and W. Schaper, Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res, 2004. 95(5): p. 449-58.

10. Heil, M., et al., Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med, 2006. 10(1): p. 45-55.

11. Eitenmuller, I., et al., The range of adaptation by collateral vessels after femoral artery occlusion. Circ Res, 2006. 99(6): p. 656-62.

12. Limbourg, A., et al., Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res, 2007. 100(3): p. 363-71.

13. Schaper, W., Tangential wall stress as a molding force in the development of collateral vessels in the canine heart. Experientia, 1967. 23(7): p. 595-6.

14. Arras, M., et al., Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest, 1998. 101(1): p. 40-50.

15. Jacobi, J., et al., Adenoviral gene transfer with soluble vascular endothelial growth factor receptors impairs angiogenesis and perfusion in a murine model of hindlimb ischemia. Circulation, 2004. 110(16): p. 2424-9.

16. Kondoh, K., et al., Conduction performance of collateral vessels induced by vascular endothelial growth factor or basic fibroblast growth factor. Cardiovasc Res, 2004. 61(1): p. 132-42.

17. Ziegelhoeffer, T., et al., Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res, 2004. 94(2): p. 230-8.

18. Scholz, D., et al., Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol, 2002. 34(7): p. 775-87.

19. Simons, M., Angiogenesis: where do we stand now? Circulation, 2005. 111(12): p. 1556-66.

Arteriogenesis, on the other hand, is defined as the enlargement of pre-existing collateral arteries and their remodelling to conductance vessels5. This process is driven by an increased blood flow in collateral arteries leading to an increase in wall tension and fluid shear stress6–8. Specific arterial signaling pathways, angiogenic growth factors, as well as resident cells in the vessel wall and circulating cells participate in this complex biological process of luminal expansion and wall growth9–14. It is important to note that arteriogenesis is the key mechanism to enhance perfusion and is, thus, critical for the rescue of ischemic organs15,16.

5. Schaper, W. Collateral circulation: past and present. Basic Res. Cardiol. 104, 5–21 (2009).

6. Heil, M. & Schaper, W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ. Res. 95, 449–458 (2004).

7. Heil, M., Eitenmuller, I., Schmitz-Rixen, T. & Schaper, W. Arteriogenesis versus angiogenesis: similarities and differences. J. Cell. Mol. Med. 10, 45–55 (2006).

8. Eitenmuller, I. et al. The range of adaptation by collateral vessels after femoral artery occlusion. Circ. Res. 99, 656–662 (2006).

9. Limbourg, A. et al. Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ. Res. 100, 363–371 (2007).

10. Schaper, W., Jageneau, A. & Xhonneux, R. The development of collateral circulation in the pig and dog heart. Cardiologia 51, 321–335 (1967).

11. Arras, M. et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101, 40–50 (1998).

12. Jacobi, J. et al. Adenoviral gene transfer with soluble vascular endothelial growth factor receptors impairs angiogenesis and perfusion in a murine model of hindlimb ischemia. Circulation 110, 2424–2429 (2004).

13. Kondoh, K. et al. Conduction performance of collateral vessels induced by vascular endothelial growth factor or basic fibroblast growth factor. Cardiovasc. Res. 61, 132–142 (2004).

14. Ziegelhoeffer, T. et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res. 94, 230–238 (2004).

15. Scholz, D. et al. Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J. Mol. Cell. Cardiol. 34, 775–787 (2002).

16. Simons, M. Angiogenesis: where do we stand now? Circulation 111, 1556–1566 (2005).

Anmerkungen

Ein Verweis auf die Quelle fehlt.

Sichter
(Hindemith) Klgn

Auch bei Fandom

Zufälliges Wiki