Fandom

VroniPlag Wiki

Mrs/026

< Mrs

31.371Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0 Teilen

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.

Study of the influence of nanoparticles on the performance and the properties of polyamide 6

von Dr. Mohammad Reza Sarbandi

vorherige Seite | zur Übersichtsseite | folgende Seite
Statistik und Sichtungsnachweis dieser Seite findet sich am Artikelende
[1.] Mrs/Fragment 026 02 - Diskussion
Zuletzt bearbeitet: 2015-04-25 22:24:41 WiseWoman
Fragment, Gesichtet, Mrs, SMWFragment, Schutzlevel sysop, Van Zyl et al 2002, Verschleierung

Typus
Verschleierung
Bearbeiter
Hindemith
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 26, Zeilen: 2-13
Quelle: Van Zyl et al 2002
Seite(n): 106, 107, Zeilen: 106: l.col: 2 ff.; 107: l.col: 1 ff.
Polymer nanocomposites constitute a class of hybrid materials composed of a polymer matrix and an inorganic filler component which has at least one dimension in the nanometer (100 nm) size domain [77- 79]. The properties of a polymer-reinforced composite are mostly influenced by the size, shape, composition, state of agglomeration, and degree of matrix filler adhesion [80]. Optimum surface curvature at the polymer-filler interface can be realized when large surface areas are created, which is possible when the filler particles are sufficiently small [81]. Decreasing the particle size to the nano-size dimension influences the macroscopic properties of the polymer because a breakdown of the common rule-of-mixture theory occurs [82]. A major challenge remains, however, to effectively incorporate mono-disperse nanoparticles inside a polyamide matrix since a drawback of such small particles is their tendency to aggregate, particularly when higher particle concentrations, intimate mixing and prolonged heating are part of the reaction conditions.

[77] E. Werner, van Zyl, G. Monserrat, Macromolecular Materials and Engineering, 2002, 287, 106-110, and references therein.

[78] E. P. Giannelis, Advanced Materials 1996, 8, 29.

[79] P. C. le Baron, Z. Wang, T. J. Pinnavaia, Applied Clay Science 1999, 15, 11

[80] W. Helbert, J. Y. Cavaille, A. Dufresne, Polymer Composites 1996, 17, 604.

[81] D. W. Clegg, A. A. Collyer, ªMechanical Properties of Reinforced Thermoplasticsº, Elsevier 1986.

[82] J. Choi, J. Harcup, A. F. Yee, Q. Zhu, R. M. Laine, Journal of the American Chemical Society. 2001, 123, 11420,

Polymer nanocomposites constitute a class of hybrid materials composed of a polymer matrix and an inorganic filler component which has at least one dimension in the nanometer (<100 nm) size domain.[1, 2] [...] The properties of a polymer-reinforced composite are mostly influenced by the size, shape, composition, state of agglomeration, and degree of matrix-filler adhesion.[4] Optimum surface curvature at the polymer-filler interface can be realized when large surface areas are created, which is possible when the filler particles are sufficiently small.[5] Decreasing the particle size to the nano-size dimension influences the macroscopic properties of the polymer because a breakdown of the common rule-of-mixture theory occurs.[6] [...] A major challenge remains, however, to effectively incorporate monodisperse nanoparticles inside a polyamide

[page 107]

matrix since a drawback of such small particles is their tendency to aggregate, particularly when higher particle concentrations, intimate mixing and prolonged heating are part of the reaction conditions.


[1] E. P. Giannelis, Adv. Mater. 1996, 8, 29.

[2] [2a] ªPolymer Clay Nanocompositesº, T. J. Pinnavaia, G. W. Beall, Eds., Wiley, New York 2001; [2b] P. C. le Baron, Z. Wang, T. J. Pinnavaia, Appl. Clay Sci. 1999, 15, 11.

[4] W. Helbert, J. Y. Cavaille, A. Dufresne, Polym. Comp. 1996, 17, 604.

[5] D. W. Clegg, A. A. Collyer, ªMechanical Properties of Reinforced Thermoplasticsº, Elsevier 1986.

[6] J. Choi, J. Harcup, A. F. Yee, Q. Zhu, R. M. Laine, J. Am. Chem. Soc. 2001, 123, 11420, and references therein.

Anmerkungen

The source is mentioned as one of three references for the first sentence. It does not become clear that the entire passage, including all references, is taken from the source.

Sichter
(Hindemith), SleepyHollow02

[2.] Mrs/Fragment 026 17 - Diskussion
Zuletzt bearbeitet: 2015-05-02 20:38:05 WiseWoman
BauernOpfer, Bhattacharya et al. 2008, Fragment, Gesichtet, Mrs, SMWFragment, Schutzlevel sysop

Typus
BauernOpfer
Bearbeiter
Klgn
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 26, Zeilen: 17-22
Quelle: Bhattacharya et al. 2008
Seite(n): 16, Zeilen: 36-41
2.5.1. Melt intercalation

Melt intercalation is the most widely used method in polymer/ particle nanocomposite preparation, and it has tremendous potential for industrial application. An advantage of this method over the others is that no solvent is required. The melt intercalation process involves mixing the particles by annealing, statically or under shear, with polymer pellets while heating the mixture above the melting point of the polymer [8].


[8] S. N.Bhattacharya, Rahul K. Gupta, Polymeric Nanocomposites Theory and Practice, Hanser 2008

2.2.3 Melt Intercalation

Melt intercalation is the most widely used method in polymer/clay nanocomposite preparation, and it has tremendous potential for industrial application. An advantage of this method over the others is that no solvent is required. The melt blending process involves mixing the layered silicate by annealing, statically or under shear, with polymer pellets while heating the mixture above the softening point of the polymer.

Anmerkungen
Sichter
(SleepyHollow02)


vorherige Seite | zur Übersichtsseite | folgende Seite
Letzte Bearbeitung dieser Seite: durch Benutzer:WiseWoman, Zeitstempel: 20150425222556

Auch bei Fandom

Zufälliges Wiki