Fandom

VroniPlag Wiki

Nm/098

< Nm

31.268Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0 Share

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.

Investigative Data Mining: Mathematical Models for Analyzing, Visualizing and Destabilizing Terrorist Networks

von Nasrullah Memon

vorherige Seite | zur Übersichtsseite | folgende Seite
Statistik und Sichtungsnachweis dieser Seite findet sich am Artikelende
[1.] Nm/Fragment 098 09 - Diskussion
Zuletzt bearbeitet: 2012-04-26 20:07:24 WiseWoman
Borgatti 2002, Fragment, Gesichtet, KomplettPlagiat, Nm, SMWFragment, Schutzlevel sysop

Typus
KomplettPlagiat
Bearbeiter
Hindemith
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 98, Zeilen: 9-22
Quelle: Borgatti_2002
Seite(n): 3, Zeilen: 1ff
Similarly, any pair of vertices in which one vertex can reach the other via a sequence of adjacent vertices is called reachable. If we determine reachability for every pair of vertices, we can construct a reachability matrix R such as depicted in Figure 3.3. The matrix R can be thought of as the result of applying transitive closure to the adjacency matrix A.

[FIGURE, different from source]

Figure 3.3. Reachability matrix

A component of a graph is defined as a maximal subgraph in which a path exists from every node to every other (i.e., they are mutually reachable). The size of a component is defined as the number of nodes it contains. A connected graph has only one component.

A sequence of adjacent vertices v_0, v_1, \ldots, v_n is known as a walk. A walk can also be seen as a sequence of incident edges, where two edges are said to be incident if they share exactly one vertex. A walk in which no vertex occurs more than once is known as a path.

Similarly, any pair of vertices in which one vertex can reach the other via a sequence of adjacent vertices is called reachable. If we determine reachability for every pair of vertices, we can construct a reachability matrix R such as depicted in Figure 3. The matrix R can be thought of as the result of applying transitive closure to the adjacency matrix A.

[FIGURE]

Figure 3

A component of a graph is defined as a maximal subgraph in which a path exists from every node to every other (i.e., they are mutually reachable). The size of a component is defined as the number of nodes it contains. A connected graph has only one component.

A sequence of adjacent vertices v_0, v_1, \ldots, v_n is known as a walk. [...]. A walk can also be seen as a sequence of incident edges, where two edges are said to be incident if they share exactly one vertex. A walk in which no vertex occurs more than once is known as a path.

Anmerkungen

No source given. The table Nm gives (figure 3.3.) can be found in the source on page 4 (figure 4).

Sichter
(Hindemith), WiseWoman


vorherige Seite | zur Übersichtsseite | folgende Seite
Letzte Bearbeitung dieser Seite: durch Benutzer:WiseWoman, Zeitstempel: 20120426200600

Auch bei Fandom

Zufälliges Wiki