## FANDOM

33.178 Seiten

 Typus Verschleierung Bearbeiter Hindemith Gesichtet
Untersuchte Arbeit:
Seite: 97, Zeilen: 1-8
Quelle: Borgatti_2002
Seite(n): 2, Zeilen: 15ff
[The natural graphical representation of an adjacency matrix is a] table, such as shown in Figure 3. 2.

[TABLE, same as in source but extended by one row and one column]

Figure 3.2. Adjacency matrix for graph in Figure 3.1.

Examining either Figure 3.1 or Figure 3.2, we can see that not every vertex is adjacent to every other. A graph in which all vertices are adjacent to all others is said to be complete. The extent to which a graph is complete is indicated by its density, which is defined as the number of edges divided by the number possible. If self-loops are excluded, then the number possible is n(n-1)/2. Hence the density of the graph in Figure 3.1 is 7/21 = 0.33.

The natural graphical representation of an adjacency matrix is a table, such as

shown in Figure 2.

[TABLE]

Figure 2. Adjacency matrix for graph in Figure 1.

Examining either Figure 1 or Figure 2, we can see that not every vertex is adjacent to every other. A graph in which all vertices are adjacent to all others is said to be complete. The extent to which a graph is complete is indicated by its density, which is defined as the number of edges divided by the number possible. If self-loops are excluded, then the number possible is n(n-1)/2. [...] Hence the density of the graph in Figure 1 is 6/15 = 0.40.

 Anmerkungen The source is not given anywhere in the thesis. Sichter (Hindemith), Bummelchen