Fandom

VroniPlag Wiki

Nm/Fragment 097 01

< Nm

31.268Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0 Share

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.


Typus
Verschleierung
Bearbeiter
Hindemith
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 97, Zeilen: 1-8
Quelle: Borgatti_2002
Seite(n): 2, Zeilen: 15ff
[The natural graphical representation of an adjacency matrix is a] table, such as shown in Figure 3. 2.

[TABLE, same as in source but extended by one row and one column]

Figure 3.2. Adjacency matrix for graph in Figure 3.1.

Examining either Figure 3.1 or Figure 3.2, we can see that not every vertex is adjacent to every other. A graph in which all vertices are adjacent to all others is said to be complete. The extent to which a graph is complete is indicated by its density, which is defined as the number of edges divided by the number possible. If self-loops are excluded, then the number possible is n(n-1)/2. Hence the density of the graph in Figure 3.1 is 7/21 = 0.33.

The natural graphical representation of an adjacency matrix is a table, such as

shown in Figure 2.

[TABLE]

Figure 2. Adjacency matrix for graph in Figure 1.

Examining either Figure 1 or Figure 2, we can see that not every vertex is adjacent to every other. A graph in which all vertices are adjacent to all others is said to be complete. The extent to which a graph is complete is indicated by its density, which is defined as the number of edges divided by the number possible. If self-loops are excluded, then the number possible is n(n-1)/2. [...] Hence the density of the graph in Figure 1 is 6/15 = 0.40.

Anmerkungen

The source is not given anywhere in the thesis.

Sichter
(Hindemith), Bummelchen

Auch bei Fandom

Zufälliges Wiki