Fandom

VroniPlag Wiki

Nm/Fragment 113 01

< Nm

31.385Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0 Teilen

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.


Typus
KomplettPlagiat
Bearbeiter
Graf Isolan
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 113, Zeilen: 1-22
Quelle: Holmgren 2006
Seite(n): 957, Zeilen: left column 18-42
[The] so-called small-world property appears to characterize many complex networks. Despite their often-large size, there is a relatively short path between any two vertices in a network: the average shortest paths between a pair of vertices scales as the logarithm of the number of vertices.

3.5 GRAPHS AS MODELS OF REAL-WORLD NETWORKS

The study of networks, and in particular the interest in the statistical measures of the topology of networks (see section 3.4), has given birth to three main classes of network models. The random graph was introduced by Erdos and Renyi in the late 1950s and is one of the earliest theoretical models of a network (Bollobas, B., 1985). This is the easiest model to analyze mathematically and it can serve as a reference for randomness. Watts and Strogatz introduced the so called small world model in 1998 (Watts, D. J., and Strogatz, S. H., 1998). This model combines high clustering and a short average path length.

In 1999, Barabasi and Albert (BA) addressed the origin of the power-law degree distribution, evident in many real networks, with a simple model (also known as the scale-free network model) that put the emphasis on how real networks evolve (Albert, R., Jeong, H., and Barabasi, A.L., 2000).

The so-called small-world property appears to characterize many complex networks. Despite their often-large size, there is a relatively short path between any two vertices in the network: the average shortest paths between

a pair of vertices scales as the logarithm of the number of vertices.

2.3. Graphs as Models of Real-World Networks

2.3.1. Theoretical Network Models

The study of networks, and in particular the interest in the statistical measures of the topology of networks (previous section), has given birth to three main classes of network models. The random graph was introduced by Erdös and Rènyi in the late 1950s and is one of the earliest theoretical models of a network. [EN 12] This is the easiest model to analyze mathematically and it can serve as a reference for randomness. Watts and Strogatz introduced the so-called small world model in 1998. [EN 4] This model combines high clustering and a short average path length. In 1999, Barabási and Albert (BA) addressed the origin of the power-law degree distribution, evident in many real networks, with a simple model (also known as the scale-free network model) that put the emphasis on how real networks evolve. [EN 13]

---

[EN 4]. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440–442.

[EN 12]. Bollobás, B. (1985). Random Graphs. London: Academic Press.

[EN 13]. Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406, 378–382.

Anmerkungen

The third page of text which is identical to Holmgren (2006). No source given.

Sichter
(Graf Isolan), Hindemith

Auch bei Fandom

Zufälliges Wiki