Fandom

VroniPlag Wiki

Nm2/436

< Nm2

31.377Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0 Teilen

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.

How Investigative Data Mining Can Help Intelligence Agencies to Discover Dependence of Nodes in Terrorist Networks

von Nasrullah Memon, David L. Hicks, Henrik Legind Larsen

vorherige Seite | zur Übersichtsseite | folgende Seite
Statistik und Sichtungsnachweis dieser Seite findet sich am Artikelende
[1.] Nm2/Fragment 436 05 - Diskussion
Zuletzt bearbeitet: 2014-01-11 22:28:47 WiseWoman
Fragment, Gesichtet, KomplettPlagiat, Koschuetzki et al 2005, Nm2, SMWFragment, Schutzlevel sysop

Typus
KomplettPlagiat
Bearbeiter
Hindemith
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 436, Zeilen: 5-11
Quelle: Koschuetzki et al 2005
Seite(n): 20, Zeilen: 8-16
The degree centrality Cd(v) of a vertex v is simply defined as the degree d(v) of v if the considered graph is undirected. The degree centrality is, e.g., applicable whenever the graph represents something like a voting result. These networks represent a static situation and we are interested in the vertex that has the most direct votes or that can reach most other vertices directly. The degree centrality is a local measure, because the centrality value of a vertex is only determined by the number of its neighbors. The most simple centrality is the degree centrality cD(v) of a vertex v that is simply defined as the degree d(v) of v if the considered graph is undirected. [...] The degree centrality is, e.g., applicable whenever the graph represents something like a voting result. These networks represent a static situation and we are interested in the vertex that has the most direct votes or that can reach most other vertices directly. The degree centrality is a local measure, because the centrality value of a vertex is only determined by the number of its neighbors.
Anmerkungen

The source is not mentioned anywhere in the paper.

Sichter
(Hindemith), WiseWoman

[2.] Nm2/Fragment 436 28 - Diskussion
Zuletzt bearbeitet: 2014-01-12 10:20:16 Singulus
Fragment, Gesichtet, Koschuetzki et al 2005, Nm2, SMWFragment, Schutzlevel sysop, Verschleierung

Typus
Verschleierung
Bearbeiter
Hindemith
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 436, Zeilen: 28-39
Quelle: Koschuetzki et al 2005
Seite(n): 22, 23, Zeilen: 22: 12ff; 23: 1-3
We denote the sum of the distances from a vertex u ∈ V to any other vertex in a graph G = (V,E) as the total distance \sum_{u\in V}d(u,v), where d(u,v) is shortest [sic] distance between the nodes u and v The problem of finding an appropriate location can be solved by computing the set of vertices with minimum total distance.

In SNA literature, a centrality measure based on this concept is called closeness. The focus lies here, for example, on measuring the closeness of a person to all other people in the network. People with a small total distance are considered as most important as those with high total distance. The most commonly employed definition of closeness is the reciprocal of the total distance:

C_{C}(u)=\frac{1}{\sum_{v\in V}d(u,v)}\qquad (2)

C_{C}(u) grows with decreasing total distance of u, therefore it is also known as a structural index.

We denote the sum of the distances from a vertex u ∈ V to any other vertex in a graph G = (V,E) as the total distance2 \sum_{v\in V}d(u,v). The problem of finding an appropriate location can be solved by computing the set of vertices with minimum total distance. [...]

In social network analysis a centrality index based on this concept is called closeness. The focus lies here, for example, on measuring the closeness of a person to all other people in the network. People with a small total distance are considered as more important as those with a high total distance. [...] The most commonly employed definition of closeness is the reciprocal of the total distance

[page 23]

C_{C}(u)=\frac{1}{\sum_{v\in V}d(u,v)}\qquad (3.2)

In our sense this definition is a vertex centrality, since 'C_{C}(u) grows with decreasing total distance of u and it is clearly a structural index.


2 In [273], Harary used the term status to describe a status of a person in an organization or a group. In the context of communication networks this sum is also called transmission number.

Anmerkungen

The source is not mentioned anywhere in the paper.

Sichter
(Hindemith), WiseWoman


vorherige Seite | zur Übersichtsseite | folgende Seite
Letzte Bearbeitung dieser Seite: durch Benutzer:Hindemith, Zeitstempel: 20140111211430


Auch bei Fandom

Zufälliges Wiki