Fandom

VroniPlag Wiki

Nm2/437

< Nm2

31.354Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0 Share

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.

How Investigative Data Mining Can Help Intelligence Agencies to Discover Dependence of Nodes in Terrorist Networks

von Nasrullah Memon, David L. Hicks, Henrik Legind Larsen

vorherige Seite | zur Übersichtsseite | folgende Seite
Statistik und Sichtungsnachweis dieser Seite findet sich am Artikelende
[1.] Nm2/Fragment 437 01 - Diskussion
Zuletzt bearbeitet: 2014-01-11 22:03:33 WiseWoman
Fragment, Gesichtet, Nm2, SMWFragment, Schutzlevel sysop, Stephenson and Zelen 1989, Verschleierung

Typus
Verschleierung
Bearbeiter
Hindemith
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 437, Zeilen: 1-5
Quelle: Stephenson and Zelen 1989
Seite(n): 3, Zeilen: 10-16
The third measure is betweenness which is defined as the frequency at which a node occurs on geodesics that connect pairs of nodes. Thus, any node that falls on the shortest path between other nodes can potentially control the transmission of information or effect exchange by being an intermediary; it is the potential for control that defines the centrality of these nodes [23].

23. Freeman, L.C., Freeman, S.C., Michaelson, A.G.: On Human Social Intelligence. Journal of Social and Biological Structures 11, 415–425 (1988)

The third measure is called betweenness and is the frequency at which a point occurs on the geodesic that connects pairs of points. Thus, any point that falls on the shortest path between other points can potentially control the transmission of information or effect exchange by being an intermediary. “It is this potential for control that defines the centrality of these points” (Freeman 1979a: 221).

Freeman, L.C. 1979 a “Centrality in Social Networks: Conceptual Clarification.” Social Networks I: 215-239.

Anmerkungen

The authors replace "point" with "node" and remove the quotation marks of the Freeman quote, although a different Freeman paper is cited that does not actually discuss "betweenness" at all. Stephenson & Zelen (1989) are not mentioned.

Sichter
(Hindemith), WiseWoman

[2.] Nm2/Fragment 437 09 - Diskussion
Zuletzt bearbeitet: 2014-01-12 10:23:42 Singulus
Fragment, Gesichtet, Koschuetzki et al 2005, Nm2, SMWFragment, Schutzlevel sysop, Verschleierung

Typus
Verschleierung
Bearbeiter
Hindemith
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 437, Zeilen: 9-19
Quelle: Koschuetzki et al 2005
Seite(n): 29-30, Zeilen: 29: 26ff; 30: 1, 13-15
Let \delta_{uw}(v) denotes the fraction of shortest paths between u and w that contain vertex v:

\delta_{uw}(v)=\frac{\sigma_{uw}(v)}{\sigma_{uw}}\quad (3)

where \sigma_{uw} denotes the number of all shortest-paths between u and w. The ratio \delta_{uw}(v) can be interpreted as the probability that vertex v is involved into any communication between u and w. Note, that the measure implicitly assumes that all communication is conducted along shortest paths. Then the betweenness centrality C_{B}(v) of a vertex v is given by:

C_{B}(v)=\sum_{u\neq v\in V}\sum_{w\neq v\in V}\delta_{uw}(v)\quad (4)

Any pair of vertices u and w without any shortest path from u to w will add zero to the betweenness centrality of every other vertex in the network.

Let \delta_{st}(v) denote the fraction of shortest paths between s and t that contain vertex v:

\delta_{st}(v)=\frac{\sigma_{st}(v)}{\sigma_{st}}\quad (3.12)

where \sigma_{st} denotes the number of all shortest-path [sic] between s and t. Ratios \delta_{st}(v) can be interpreted as the probability that vertex v is involved into any communication between s and t. Note, that the index implicitly assumes that all communication is conducted along shortest paths. Then the betweenness centrality c_{B}(v) of a vertex v is given by:

[page 30]

c_{B}(v)=\sum_{s\neq v\in V}\sum_{t\neq v\in V}\delta_{st}(v)\quad (3.13)

[...]

Any pair of vertices s and t without any shortest path from s to t just will add zero to the betweenness centrality of every other vertex in the network.

Anmerkungen

The definitions given here are, of course, standard and don't require a citation. However, the interpreting and explaining text is taken from the source word for word. The source is not mentioned in the paper anywhere.

Sichter
(Hindemith), WiseWoman


vorherige Seite | zur Übersichtsseite | folgende Seite
Letzte Bearbeitung dieser Seite: durch Benutzer:Hindemith, Zeitstempel: 20140111234828


Auch bei Fandom

Zufälliges Wiki