Fandom

VroniPlag Wiki

Quelle:Br/Wilson 2005

< Quelle:Br

31.377Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.

Angaben zur Quelle [Bearbeiten]

Autor     Iain Wilson
Titel    Hippocampal place cells as a window into cognitive aging
Ort    Kuopio (Finnland)
Jahr    2005
Nummer    76
Seiten    121
Reihe    Department of Neuroscience Series of Reports
Anmerkung    Dissertation Department of Neuroscience and Neurology, University of Kuopio; presented 22.June 2005
ISBN    951-781-368-6, 951-27-0206-1 (PDF)
ISSN    0357-6043
URL    http://wanda.uef.fi/uku-vaitokset/vaitokset/2005/isbn951-781-368-676.pdf

Literaturverz.   

nein
Fußnoten    nein
Fragmente    2


Fragmente der Quelle:
[1.] Br/Fragment 011 18 - Diskussion
Zuletzt bearbeitet: 2016-05-21 17:57:01 Schumann
Br, Fragment, Gesichtet, KomplettPlagiat, SMWFragment, Schutzlevel sysop, Wilson 2005

Typus
KomplettPlagiat
Bearbeiter
Graf Isolan
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 11, Zeilen: 18-21
Quelle: Wilson 2005
Seite(n): 28, Zeilen: 14-18
The hippocampus receives highly processed multi-modal information from the association cortices (Amaral and Witter, 1995), that is, inputs from all the sensory modalities, vision, hearing, touch, etc, have already converged and been preliminarily associated with one another by the time they reach the hippocampus.

• Amaral DG, Witter MP (1995) Hippocampal formation. In: G. Paxinos, Editor, The Rat Nervous System (2nd edition ed.) Academic Press, San Diego (1995), pp. 443–493.

The hippocampus receives highly processed multi-modal information from the association cortices (Amaral and Witter, 1995). That is, inputs from all the sensory modalities, vision, hearing, touch, etc., have already converged and been preliminarily associated with one another by the time they reach the hippocampus.

Amaral, D.G., and Witter, M.P. (1995). Hippocampal formation. In: The rat nervous system, 2nd ed, Paxinos, G. ed., (San Diego: Academic Press) pp. 443-493.

Anmerkungen

Ohne Hinweis auf eine Übernahme.

Sichter
(Graf Isolan) Schumann

[2.] Br/Fragment 012 05 - Diskussion
Zuletzt bearbeitet: 2016-05-21 17:55:22 Schumann
Br, Fragment, Gesichtet, KomplettPlagiat, SMWFragment, Schutzlevel sysop, Wilson 2005

Typus
KomplettPlagiat
Bearbeiter
Graf Isolan
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 12, Zeilen: 5-26
Quelle: Wilson 2005
Seite(n): 29, 30, Zeilen: 29:13-16; 30:2-22
Information flow within the hippocampus formation is classically described as a trisynaptic circuit, signifying a cascade of processing (Amaral, 1993; Amaral and Witter, 1995), although there is also evidence of some feedback processing within the hippocampus (Penttonen et al., 1997). The first synaptic connections to enter the hippocampus arise from layer II of the entorhinal cortex, which sends highly processed sensory information through the perforant path to dentate gyrus. These axons also branch off collaterals to the CA3 region. The second synaptic connections come from the dentate gyrus via the mossy fibres to the CA3. Thus the information from the entorhinal cortex arrives to CA3 both monosynaptically and disynaptically. This information is further processed within CA3 through auto-association fibres, which connect the CA3 pyramidal cells with one another. The third connection in the trisynaptic circuit brings the information from the CA3 cells via the Schaffer collaterals to the CA1 cells. Interestingly, CA1 also receives the information from the entorhinal cortex twice, trisynaptically from CA3 and monosynaptically through a direct connection from layer III of the entorhinal cortex (Amaral, 1993; Amaral and Witter, 1995). CA1 projects its processed information to subiculum, where once again the entorhinal cortex has also sent its information. Finally, the information is returned from CA1 to the entorhinal cortex both monosynaptically through direct projections from CA1 and disynaptically through the subiculum. Fig.1 represents the major intrinsic connections of the hippocampal formation. These simultaneous projections appear to be a guiding principle of the hippocampal circuit, allowing the processed information to be compared with a form of the original information at every step [through parallel processing in addition to the classical serial cascade of processing (Amaral, 1993).]

• Amaral DG (1993) Emerging principles of hippocampal organization. Current Opinion in Neurobiology 3:225-229.

• Amaral DG, Witter MP (1995) Hippocampal formation. In: G. Paxinos, Editor, The Rat Nervous System (2nd edition ed.) Academic Press, San Diego (1995), pp. 443–493.

• Penttonen M, Kamondi A, Sik A, Acsády L, Buzsáki G (1997) Feed-forward and feed-back activation of the dentate gyrus in vivo during dentate spikes and sharp wave bursts. Hippocampus 7:437-50.

[Seite 29]

Information flow within the hippocampus formation is classically described as a trisynaptic circuit, signifying a cascade of processing (Amaral, 1993; Amaral and Witter, 1995), although there is also evidence of some feedback processing within the hippocampus (Penttonen et al., 1997).

[Seite 30]

The first synaptic connections to enter the hippocampus arise from layer II of the entorhinal cortex, which sends highly processed sensory information through the perforant path to the dentate gyrus. These axons also branch off collaterals to the CA3 region. The second synaptic connections come from the dentate gyrus via the mossy fibers to the CA3. Thus the information from the entorhinal cortex arrives to CA3 both monosynaptically and disynaptically. This information is further processed within CA3 through auto-association fibers, which connect the CA3 pyramidal cells with one another. The third connection in the trisynaptic circuit brings the information from the CA3 cells via the Schaffer collaterals to the CA1 cells. Interestingly, CA1 also receives the information from the entorhinal cortex twice, trisynaptically from CA3 and monosynaptically through a direct connection from layer III of the entorhinal cortex (Amaral, 1993; Amaral and Witter, 1995).

CA1 projects its processed information to subiculum, where once again the entorhinal cortex (layer III) has also sent its information. Finally, the information is returned from CA1 to the entorhinal cortex (in this case the deep layers IV-VI) both monosynaptically through direct projections from CA1 and disynaptically through the subiculum. These simultaneous projections appear to be a guiding principle of the hippocampal circuit, allowing the processed information to be compared with a form of the original information at every step through parallel processing in addition to the classical serial cascade of processing (Amaral, 1993).


Amaral, D.G. (1993). Emerging principles of intrinsic hippocampal organization. Curr. Opin. Neurobiol. 3: 225-229.

Amaral, D.G., and Witter, M.P. (1995). Hippocampal formation. In: The rat nervous system, 2nd ed, Paxinos, G. ed., (San Diego: Academic Press) pp. 443-493.

Penttonen, M., Kamondi, A., Sik, A., Acsady, L., and Buzsaki, G. (1997). Feed-forward and feed-back activation of the dentate gyrus in vivo during dentate spikes and sharp wave bursts. Hippocampus 7: 437-450.

Anmerkungen

Ohne Hinweis auf eine Übernahme.

Sichter
(Graf Isolan) Schumann

Auch bei Fandom

Zufälliges Wiki