Fandom

VroniPlag Wiki

Quelle:Nm2/Brandes Erlebach 2005

< Quelle:Nm2

31.377Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.

Angaben zur Quelle [Bearbeiten]

Autor     Ulrik Brandes, Thomas Erlebach
Titel    Chapter 2 Fundamentals
Sammlung    Network Analysis: Methodological Foundations
Herausgeber    Ulrik Brandes, Thomas Erlebach
Ort    Berlin Heidelberg
Verlag    Springer
Jahr    2005
ISBN    978-3-540-24979-5
ISSN    0302-9743
URL    http://www.inf.uni-konstanz.de/algo/publications/be-f-05.pdf

Literaturverz.   

no
Fußnoten    no
Fragmente    1


Fragmente der Quelle:
[1.] Nm2/Fragment 435 09 - Diskussion
Zuletzt bearbeitet: 2014-01-11 23:32:43 WiseWoman
Brandes Erlebach 2005, Fragment, Gesichtet, KeineWertung, Nm2, SMWFragment, Schutzlevel sysop

Typus
KeineWertung
Bearbeiter
Hindemith
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 435, Zeilen: 9-17
Quelle: Brandes Erlebach 2005
Seite(n): 7, 8, Zeilen: 7: 30ff; 8: 1ff
Graphs can be undirected or directed. The adjacency matrix of an undirected graph is symmetric. An undirected edge joining vertices u, v \in V is denoted by \{u, v\}.

In directed graphs, each directed edge (arc) has an origin (tail) and a destination (head). An edge with origin u \in V is represented by an ordered pair (u, v). As a shorthand notation, an edge \{u, v\} can also be denoted by uv. It should be noted that, in a directed graph, uv is short for (u, v), while in an undirected graph, uv and vu are the same and both stand for \{u, v\}. Graphs that can have directed as well undirected edges are called mixed graphs, but such graphs are encountered rarely.

Graphs can be undirected or directed. In undirected graphs, the order of the endvertices of an edge is immaterial. An undirected edge joining vertices u, v \in V is denoted by \{u, v\}. In directed graphs, each directed edge (arc) has an origin (tail) and a destination (head). An edge with origin u \in V and destination v \in V is represented by an ordered pair (u, v). As a shorthand notation, an edge \{u, v\} or (u, v) can also be denoted by uv. In a directed graph, uv is short for (u, v), while in an undirected graph, uv and vu are the same and both stand for \{u, v\}. [...]. Graphs that can have directed edges as well as undirected edges are called mixed graphs, but such graphs are encountered rarely [...]
Anmerkungen

The source is not mentioned anywhere in the paper. But note that the content here are the very basics of graph theory and found at many places (however not always in the same wording). After the title of chapter there is a footnote 2, which reads:

2 Most of the concepts discussed in this section are taken from [22].

(22. West, B.D.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Englewood Cliffs (2001))

Sichter
(Hindemith), WiseWoman

Auch bei Fandom

Zufälliges Wiki