VroniPlag Wiki

This Wiki is best viewed in Firefox with Adblock plus extension.

MEHR ERFAHREN

VroniPlag Wiki

Angaben zur Quelle [Bearbeiten]

Autor     T Kawai and S Akira
Titel    TLR signaling
Zeitschrift    Cell Death and Differentiation
Ausgabe    13
Jahr    2006
Seiten    816–825
DOI    0.1038/sj.cdd.4401850
URL    http://www.nature.com/cdd/journal/v13/n5/full/4401850a.html, https://www.nature.com/cdd/journal/v13/n5/pdf/4401850a.pdf

Literaturverz.   

no
Fußnoten    no
Fragmente    2


Fragmente der Quelle:
[1.] Ntx/Fragment 008 18 - Diskussion
Zuletzt bearbeitet: 2014-10-20 15:23:01 Graf Isolan
Fragment, Kawai und Akari 2006, KomplettPlagiat, Ntx, SMWFragment, Schutzlevel, ZuSichten

Typus
KomplettPlagiat
Bearbeiter
Graf Isolan
Gesichtet
No
Untersuchte Arbeit:
Seite: 8, Zeilen: 18-32
Quelle: Kawai und Akari 2006
Seite(n): 816, Zeilen: 31-52
To date, 10 members of Toll-like receptors (TLRs) have been identified in human, and 13 in mice, and a series of genetic studies have revealed their respective ligands (Fig. 4) (Takeda and Akira 2005a). For example, LPS of Gram-negative bacteria is recognized by TLR4. TLR2, in concert with TLR1 or TLR6, recognizes various bacterial components, including peptidoglycan, lipopeptide and lipoprotein of Gram-positive bacteria and mycoplasma lipopeptide. In particular, TLR1/2 and TLR2/6 discriminate triacyl lipopeptide and diacyl lipopeptide, respectively. TLR3 recognizes double-stranded RNA (dsRNA) that is produced from many viruses during replication. TLR5 recognizes bacterial flagellin. Mouse TLR11 recognizes yet unknown components of uropathogenic bacteria and a profilin-like molecule of the protozoan parasite Toxoplasma gondii. TLR7 recognizes synthetic imidazoquinoline-like molecules, guanosine analogs such as loxoribine, single-stranded RNA (ssRNA) derived from human immunodeficiency virus type I (HIV-1), vesicular stomatitis virus (VSV) and influenza virus, and certain siRNAs. While mouse TLR8, which shows the highest homology to TLR7, is thought to be nonfunctional, human TLR8 mediates the recognition of imidazoquinolines and ssRNA.
To date, 10 members of Toll-like receptors (TLRs) have been identified in human, and 13 in mice, and a series of genetic studies have revealed their respective ligands (Figure 1).7 For example, LPS of Gram-negative bacteria is recognized by TLR4 (hToll).5,6 TLR2, in concert with TLR1 or TLR6, recognizes various bacterial components, including peptidoglycan, lipopeptide and lipoprotein of Gram-positive bacteria and mycoplasma lipopeptide.8–12 In particular, TLR1/2 and TLR2/6 discriminate triacyl lipopeptide and diacyl lipopeptide, respectively. TLR3 recognizes double-stranded RNA (dsRNA) that is produced from many viruses during replication.13 TLR5 recognizes bacterial flagellin.14 Mouse TLR11 recognizes yet unknown components of uropathogenic bacteria, and a profilin-like molecule of the protozoan parasite Toxoplasma gondii.15,16 TLR7 recognizes synthetic imidazoquinoline-like molecules, guanosine analogs such as loxoribine, single-stranded RNA (ssRNA) derived from human immunodeficiency virus type I (HIV-1), vesicular stomatitis virus (VSV) and influenza virus, and certain siRNAs.17–23 While mouse TLR8, which shows the highest homology to TLR7, is thought to be nonfunctional, human TLR8 mediates the recognition of imidazoquinolines and ssRNA.19–21

5. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B and Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085–2088

6. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K and Akira S (1999) Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162: 3749–3752

7. Takeda K and Akira S (2005) Toll-like receptors in innate immunity. Int. Immunol. 17: 1–14

8. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K and Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gramnegative and gram-positive bacterial cell wall components. Immunity 11: 443–451

9. Takeuchi O, Kaufmann A, Grote K, Kawai T, Hoshino K, Morr M, Muhlradt PF and Akira S (2000) Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164: 554–557

10. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL and Akira S (2002) Role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169: 10–14

11. Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K and Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13: 933–940

12. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L and Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 97: 13766–13771

13. Alexopoulou L, Holt AC, Medzhitov R and Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732–738

14. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM and Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099–1103

15. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA and Ghosh S (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303: 1522–1526

16. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S and Sher A (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308: 1626–1629

17. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K and Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3: 196–200

18. Diebold SS, Kaisho T, Hemmi H, Akira S and Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303: 1529–1531

19. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H and Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303: 1526–1529

20. Heil F, Ahmad-Nejad P, Hemmi H, Hochrein H, Ampenberger F, Gellert T, Dietrich H, Lipford G, Takeda K, Akira S, Wagner H and Bauer S (2003) The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7 8 and 9 subfamily. Eur. J. Immunol. 33: 2987–2997

21. Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G and Bauer S (2002) Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3: 499

Anmerkungen

Ohne Hinweis auf eine Übernahme. Für die angegebene Referenz existiert kein Eintrag im Literaturverzeichnis.

Sichter
(Graf Isolan)


[2.] Ntx/Fragment 009 01 - Diskussion
Zuletzt bearbeitet: 2017-08-28 07:24:31 Graf Isolan
Fragment, Kawai und Akari 2006, Ntx, SMWFragment, Schutzlevel, Verschleierung, ZuSichten

Typus
Verschleierung
Bearbeiter
Graf Isolan
Gesichtet
No
Untersuchte Arbeit:
Seite: 9, Zeilen: 1-9
Quelle: Kawai und Akari 2006
Seite(n): 817, Zeilen: left col. 1-8, 11-16
[TLR9 recognizes bacterial and viral CpG DNA motifs and] malaria pigment hemozoin (Iwasaki and Medzhitov 2004) (Coban et al 2005; Hemmi et al 2000; Krug et al 2004).

After recognition of microbial pathogens, TLRs trigger intracellular signaling pathways that result in the induction of inflammatory cytokines, type I interferon (IFN) and chemokines (Figure 4). Moreover, signaling from TLRs induces DC maturation with the upregulation of costimulatory molecules. Importantly, TLRs activate a common signaling pathway that culminates in the induction of inflammatory cytokines such as tumor necrosis factor (TNFα), IL-6, IL-1β and IL-12, as well as alternative pathways that induce appropriate effector responses against different types of pathogens (Akira and Takeda 2004).


Akira,S., Takeda,K., 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499-511.

Coban,C., Ishii,K.J., Kawai,T., Hemmi,H., Sato,S., Uematsu,S., Yamamoto,M., Takeuchi,O., Itagaki,S., Kumar,N., Horii,T., Akira,S., 2005. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 201, 19-25.

Hemmi,H., Takeuchi,O., Kawai,T., Kaisho,T., Sato,S., Sanjo,H., Matsumoto,M., Hoshino,K., Wagner,H., Takeda,K., Akira,S., 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745.

Iwasaki,A., Medzhitov,R., 2004. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987-995.

Krug,A., French,A.R., Barchet,W., Fischer,J.A., Dzionek,A., Pingel,J.T., Orihuela,M.M., Akira,S., Yokoyama,W.M., Colonna,M., 2004. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity. 21, 107-119.

[TLR9] recognizes bacterial and viral CpG DNA motifs and malaria pigment hemozoin.24–27 After recognition of microbial pathogens, TLRs trigger intracellular signaling pathways that result in the induction of inflammatory cytokines, type I interferon (IFN) and chemokines (Figure 1). Moreover, signaling from TLRs induces the upregulation of costimulatory molecules on

specialized antigen-presenting cells called dendritic cells (DCs). [...] Importantly, TLRs activate a common signaling pathway that culminates in the induction of inflammatory cytokines such as tumor necrosis factor (TNF)α, IL-6, IL-1β and IL-12, as well as alternative pathways that induce appropriate and effecter responses against different types of pathogens (Figure 1).29


24. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K and Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745

25. Krug A, French AR, Barchet W, Fischer JA, Dzionek A, Pingel JT, Orihuela MM, Akira S, Yokoyama WM and Colonna M (2004) TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21: 107–119

26. Lund J, Sato A, Akira S, Medzhitov R and Iwasaki A (2003) Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198: 513–520

27. Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, Horii T and Akira S (2005) Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 201: 19–25

29. Akira S and Takeda K (2004) Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499–511

Anmerkungen

Ohne Hinweis auf eine Übernahme. Figure 1 aus Kawai und Akari (2006) wurde (ohne Legende) als "Figure D" mit anderer Quellenangabe übernommen.

Sichter
(Graf Isolan)