Fandom

VroniPlag Wiki

Quelle:Sih/Eschenhagen und Zimmermann 2005

< Quelle:Sih

31.373Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.

Angaben zur Quelle [Bearbeiten]

Autor     Thomas Eschenhagen, Wolfram H. Zimmermann
Titel    Engineering Myocardial Tissue
Zeitschrift    Circulation Research
Herausgeber    American Heart Association
Ausgabe    97
Jahr    2005
Seiten    1220-1231
ISSN    Print ISSN: 0009-7330. Online ISSN: 1524-4571
DOI    10.1161/01.RES.0000196562.73231.7d
URL    http://circres.ahajournals.org/content/97/12/1220

Literaturverz.   

ja
Fußnoten    nein
Fragmente    2


Fragmente der Quelle:
[1.] Analyse:Sih/Fragment 019 17 - Diskussion
Zuletzt bearbeitet: 2014-08-26 20:42:00 Graf Isolan
Eschenhagen und Zimmermann 2005, Fragment, KomplettPlagiat, SMWFragment, Schutzlevel, Sih, ZuSichten

Typus
KomplettPlagiat
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 19, Zeilen: 17-26, 29-31
Quelle: Eschenhagen und Zimmermann 2005
Seite(n): 1220, Zeilen: li. Sp. 1-10.17-22 - re.Sp. 1-2
The term “Tissue Engineering” was introduced in 1987 by members of the US National Science Foundation (NSF) in Washington, D.C. It was defined a year later at an NSF organized conference on tissue engineering in Lake Tahoe, California as “Application of principles and methods of engineering and life sciences toward fundamental understanding of structure–function relationship in normal and pathological mammalian tissues and the development of biological substitutes to restore, maintain, or improve functions.” Tissue engineering aims at generating functional three-dimensional tissues outside of the body that can be tailored in size, shape and function according to the particular needs before implanting them into the body. Tissue engineering is no longer restricted to the academic laboratory. Tissueengineered skin is commercially available; cartilage is in clinical trials and should be available within a few years. First clinical experiences have been published using bioengineered skin, cartilage, and vascular grafts 100, 266, 303, but the present data are still preliminary 401.

100. Garfein ES, Orgill DP, Pribaz JJ (2003) Clinical applications of tissue engineered constructs. Clin Plast Surg 30 (4):485-98

266. Rahaman MN, Mao JJ (2005) Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol Bioeng 91 (3):261-84

303. Shinoka T, Matsumura K, Hibino N, Naito Y, Murata A, Kosaka Y, Kurosawa H (2003) Clinical practice of transplantation of regenerated blood vessels using bone marrow cells]. Nippon Naika Gakkai Zasshi 92 (9):1776-80

401. Zandonella C (2003) Tissue engineering: The beat goes on. Nature 421 (6926):884-6

The term “Tissue Engineering” was introduced in 1987 by members of the US National Science Foundation (NSF) in Washington, D.C. and defined a year later at an NSF-organized conference on tissue engineering in Lake Tahoe, California as “Application of principles and methods of engineering and life sciences toward fundamental understanding of structure–function relationship in normal and pathological mammalian tissues and the development of biological substitutes to restore, maintain, or improve functions.”

[...] Tissue engineering aims at generating functional 3D tissues outside of the body that can by [sic] tailored in size, shape, and function according to the respective needs before implanting them into the body. First clinical experiences have been published using bioengineered skin, cartilage, and vascular grafts,7–9 but the present data are still preliminary (for review of the “bioartificial heart,” see also ref 10).


7. Garfein ES, Orgill DP, Pribaz JJ. Clinical applications of tissue engineered constructs. Clin Plast Surg. 2003;30:485– 498.

8. Shinoka T, Matsumura K, Hibino N, Naito Y, Murata A, Kosaka Y, Kurosawa H. [Clinical practice of transplantation of regenerated blood vessels using bone marrow cells]. Nippon Naika Gakkai Zasshi. 2003; 92:1776–1780.

9. Rahaman MN, Mao JJ Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol Bioeng. 2005.

10. Zandonella C. The beat goes on. Nature. 2003;421:884–886.

Anmerkungen

Wortwörtliche Übernahme inklusive der Literaturreferenzen. Ohne Hinweis auf eine Übernahme. Der hier fehlende Teil der Zeilen 11-17 der ungenannt bleibenden Quelle wird von Sih auf der folgenden Seite präsentiert (vgl. Sih/Fragment_020_04).

Sichter
(Graf Isolan)

[2.] Analyse:Sih/Fragment 020 04 - Diskussion
Zuletzt bearbeitet: 2014-08-26 20:57:24 Graf Isolan
Eschenhagen und Zimmermann 2005, Fragment, KeineWertung, SMWFragment, Schutzlevel, Sih, ZuSichten

Typus
KeineWertung
Bearbeiter
Graf Isolan
Gesichtet
No.png
Untersuchte Arbeit:
Seite: 20, Zeilen: 4-9
Quelle: Eschenhagen und Zimmermann 2005
Seite(n): 1220, Zeilen: li. Sp. 11-17
The second approach can be synonymous with, “cell therapy” which intends to promote the formation of new tissue or to improve the function of an existing tissue by injecting or infusing suspensions of isolated cells. This concept has gained much attraction over the past years; studies have been performed in animals 53, 164, 167, 168, 307 and are currently tested in controlled clinical trials 70, 173, 207, 208, 220, 221, 318, 370.

53. Chiu RC, Zibaitis A, Kao RL (1995) Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg 60 (1):12-8

70. Dimmeler S, Zeiher AM, Schneider MD (2005) Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115 (3):572-83

164. Klug MG, Soonpaa MH, Koh GY, Field LJ (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98 (1):216-24

167. Koh GY, Klug MG, Soonpaa MH, Field LJ (1993) Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest 92 (3):1548-54

168. Koh GY, Soonpaa MH, Klug MG, Field LJ (1993) Long-term survival of AT-1 cardiomyocyte grafts in syngeneic myocardium. Am J Physiol 264 (5):1727-33

173. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23 (7):845-56

207. Menasche P (2005) Skeletal myoblast for cell therapy. Coron Artery Dis 16 (2):105-10

208. Menasche P, Hagege AA, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K, Vilquin JT, Marolleau JP (2001) Myoblast transplantation for heart failure. Lancet 357 (9252):279-80

220. Murry CE, Whitney ML, Laflamme MA, Reinecke H, Field LJ (2002) Cellular therapies for myocardial infarct repair. Cold Spring Harb Symp Quant Biol 67 519-26

221. Nadal-Ginard B, Kajstura J, Anversa P, Leri A (2003) A matter of life and death: cardiac myocyte apoptosis and regeneration. J Clin Invest 111 (10):1457-9

307. Soonpaa MH, Koh GY, Klug MG, Field LJ (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264 (5155):98-101

318. Strauer BE, Brehm M, Zeus T, Gattermann N, Hernandez A, Sorg RV, Kogler G, Wernet P (2001) [Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction]. Dtsch Med Wochenschr 126 (34-35):932-8

370. von Harsdorf R, Poole-Wilson PA, Dietz R (2004) Regenerative capacity of the myocardium: implications for treatment of heart failure. Lancet 363 (9417):1306-13

The “repair” part of tissue engineering overlaps, but is not synonymous with, “cell therapy” which intends to promote the formation of new tissue or to improve the function of an existing tissue by injecting or infusing suspensions of isolated cells. This concept has gained much attraction over the past years and is currently tested in controlled clinical trials (for review see references 1–6).

1. Murry CE, Whitney ML, Laflamme MA, Reinecke H, Field LJ. Cellular therapies for myocardial infarct repair. Cold Spring Harb Symp Quant Biol. 2002;67:519–526.

2. Nadal-Ginard B, Kajstura J, Anversa P, Leri A. A matter of life and death: cardiac myocyte apoptosis and regeneration. J Clin Invest. 2003; 111:1457–1459.

3. von Harsdorf R, Poole-Wilson PA, Dietz R. Regenerative capacity of the myocardium: implications for treatment of heart failure. Lancet. 2004; 363:1306–1313.

4. Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest. 2005;115:572–583.

5. Menasche P. Skeletal myoblast for cell therapy. Coron Artery Dis. 2005;16:105–110.

6. Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol. 2005;23:845– 856.

Anmerkungen

Wörtlich übereinstimmend; ohne Hinweis auf die eigentliche Quelle (vgl. auch Sih/Fragment_019_17). Die in der Quelle angegebenen Literaturangaben sind alle bei Sih wiederzufinden.

Sichter
(Graf Isolan)

Auch bei Fandom

Zufälliges Wiki