Fandom

VroniPlag Wiki

Rh/Fragment 140 14

< Rh

31.268Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0 Share

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.


Typus
Verschleierung
Bearbeiter
Graf Isolan
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 140, Zeilen: 14-31
Quelle: Teh 2007
Seite(n): 4, Zeilen: 5-23
Now we are interested in the posterior distribution of G given some observed values. Let π1, ..., πn be a sequence of independent draws from G. Note that the πi's take values in Θ since G is a distribution over Θ. Let A1,...,Ar be a finite measurable partition of Θ, and let nk be the number of observed values in Ak. Then by the conjugancy [sic!] between the Dirichlet and the multinomial distributions, we have
(G(A1),...,G(Ar))│π1, ..., πn ~ Dir(αG0(A1)+n1, ..., αG0(Ar)+nr). (5.3.2)

Since the above is true for all finite measurable partitions, the posterior distribution over G must be a DP as well.

In fact, the posterior DP is

{\scriptstyle G\mid \pi_1,\dots,\pi_n\sim DP \left( \alpha+n,\frac{\alpha G_0 + \sum^n_{i=1}\delta_{\pi_i}}{\alpha+n}\right).}

Notice that the DP has updated concentration parameter α+n and base distribution {\scriptstyle\frac{\alpha G_0 + \sum^n_{i=1}\delta_{\pi_i}}{\alpha+n},} where δi is a point mass located at πi and {\scriptstyle n_k = \sum^n_{i=1}\delta_{\pi_i}(A_k).} In other words, the DP provides a conjugate family of priors over distributions that are closed under posterior updates given observations.

Furthermore, notice that the posterior base distribution is weighted average between the prior base G0 and the empirical distribution {\scriptstyle\frac{\sum^n_{i=1}\delta_{\pi_i}}{n}.} Indeed, the weight associated with the prior base distribution is proportional to α, while the empirical distribution has weight proportional to the number of observations n.

Let θ1, ..., θn be a sequence of independent draws from G. Note that the θi's take values in Θ since G is a distribution over Θ. We are interested in the posterior distribution of G given observed values of θ1, ..., θn. Let A1,...,Ar be a finite measurable partition of Θ, and let nk=#{i: θi ∈ Ak} be the number of observed values in Ak. By (1) and the conjugacy between the Dirichlet and the multinomial distributions, we have
(G(A1),...,G(Ar))│θ1, ..., θn ~ Dir(αH(A1)+n1, ..., αH(Ar)+nr). (2)

Since the above is true for all finite measurable partitions, the posterior distribution over G must be a DP as well. A little algebra shows that the posterior DP has updated concentration parameter α+n and base distribution {\scriptstyle\frac{\alpha H + \sum^n_{i=1}\delta_{\theta_i}}{\alpha+n},} where δi is a point mass located at θi and {\scriptstyle n_k = \sum^n_{i=1}\delta_i(A_k).} In other words, the DP provides a conjugate family of priors over distributions that is closed under posterior updates given observations. Rewriting the posterior DP, we have

{\scriptstyle G\mid \theta_1,\dots,\theta_n\sim DP\left(\alpha+n,\frac{\alpha}{\alpha+n}H + \frac{n}{\alpha+n} \frac{\sum^n_{i=1}\delta_{\pi_i}}{n}\right).} (3).

Notice that the posterior base distribution is a weighted average between the prior base distribution H and the empirical distribution {\scriptstyle\frac{\sum^n_{i=1}\delta_{\theta_i}}{n}.} The weight associated with the prior base distribution is proportional to α, while the empirical distribution has weight proportional to the number of observations n.

Anmerkungen

keine Kennzeichnung der übernommenen Passagen, keine Quellenangabe;

Sichter
(Graf Isolan), Hindemith

Auch bei Fandom

Zufälliges Wiki