Fandom

VroniPlag Wiki

Uta/Fragment 013 15

< Uta

31.288Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0 Share

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.


Typus
KomplettPlagiat
Bearbeiter
Graf Isolan
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 13, Zeilen: 15-33
Quelle: Spahl 2004
Seite(n): 2-3, Zeilen: 2:30-33 - 3:1-14
NO besitzt ein ungepaartes Elektron, ist somit ein Radikal und kann durch Reaktion mit der Häm-Gruppe Enzyme des Energiestoffwechsels hemmen (Henry et al., 1993). Außerdem wird die Reparatur von Nukleinsäuren durch Hemmung des DNS-Reparaturenzyms Formamidpyrimidin-DNS-Glykolase beeinträchtigt (Laval & Wink, 1994).

Der Hauptreaktionspartner von NO in Proteinen ist die Aminosäure Cystein, deren SH-Gruppen mit NO in Gegenwart von O2 zu S-Nitrosothiolen reagieren (Wink et al., 1994; Kröncke, 2001a).

SH-Gruppen sind unter anderem durch die Bildung von Fe-S und Zn-S Clustern essentiell für die Tertiärstruktur vieler Proteine. Dabei befinden sich Fe-S Cluster meist innerhalb oder in der Nähe katalytischer Zentren von Enzymen, die durch Nitrosierung inaktiviert werden können (Gopalakrishna et al., 1993; Caselli et al., 1994). Zn-S Cluster bilden relativ stabile „Loops“ in der Aminosäuren-Kette, die unter anderem als sogenannte Zinkfinger mit der DNS, RNS oder Proteinen in Interaktion treten können (Klug & Schwabe, 1995). Kröncke et al. zeigten, dass NO unter aeroben Bedingungen Zn2+ aus Zinkfinger-Strukturen freisetzt, was über eine Strukturänderung zur Hemmung der spezifischen Bindung von Zinkfinger-Transkriptionsfaktoren (-TF) an die DNS führt (Kröncke et al., 1994; Kröncke & Carlberg, 2000, Kröncke, 2001b). NO zerstört Zinkfinger-Proteine nicht [irreversibel, da die Zinkfinger über das zelluläre Redoxsystem wieder regeneriert werden können (Kröncke & Carlberg, 2000; Kröncke et al., 2002).]


Caselli A, Camici G, Manao G, Moneti G, Pazzagli L, Cappugi G, Ramponi G: Nitric oxide causes inactivation of the low molecular weight phosphotyrosine protein phosphatase. Journal of Biological Chemistry 1994; 269: 24878-24882

Gopalakrishna R, Chen ZH, Gundimeda U: Nitric oxide and nitric oxidegenerating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. J. Biol. Chem. 1993; 268: 27180-27185

Henry Y, Lepoivre M, Drapier JC, Ducrocq C, Boucher JL, Guissani A: EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J. 1993; 7: 124-1134.

Klug A, Schwabe JW: Protein motifs 5. Zinc fingers. FASEB J. 1995; 9: 597-604.

Kröncke KD (2001a): Cystein-Zn2+ [sic] complexes: unique molecular switches for inducible nitric oxide synthase-derived NO. FASEB J. 2001 Nov; 15(13):2503-7

Kröncke KD (2001b) Zinc finger proteins as molecular targets for nitric oxidemediated gene regulation. Antioxid.Redox.Signal. 2001; 3: 565-575.

Kröncke KD, Carlberg C: Inactivation of zinc finger transcription factors provides a mechanism for a gene regulatory role of nitric oxide. FASEB J. 2000; 14: 166-173

Kröncke KD, Fehsel K, Schmidt T, Zenke FT, Dasting I, Wesener JR, Bettermann H, Breunig KD, Kolb-Bachofen V: Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem. Biophys. Res. Commun. 1994; 200: 1105-1110

Kröncke KD, Klotz LO, Suschek CV, Sies H.: Comparing nitrosative versus oxidative stress toward zinc finger-dependent transcription. Unique role for NO. Journal of Biological Chemistry 2002; 277: 13294-13301

Laval F, Wink DA : Inhibition by nitric oxide of the repair protein, O6-methylguanine-DNA-methyltransferase. Carcinogenesis 1994; 15: 443-447

Wink DA, Nims RW, Darbyshire JF, Christodoulou D, Hanbauer I, Cox GW, Laval F, Laval J, Cook JA, Krishna MC: Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem.Res.Toxicol.1994; 7: 519-525

[Seite 2]

NO besitzt ein ungepaartes Elektron, ist somit ein Radikal und kann durch Reaktion mit der Häm-Gruppe Enzyme des Energiestoffwechsels (Henry et al., 1993) hemmen. Ausserdem wird die Reparatur von Nukleinsäuren durch Hemmung des DNS-Reparaturenzyms Formamidpyrimidin-DNS Glykolase beeinträchtigt (Laval & Wink, 1994).

[Seite 3]

Der Hauptreaktionspartner von NO in Proteinen ist die Aminosäure Cystein, deren SH-Gruppen mit NO in Gegenwart von O2 zu S-Nitrosothiolen reagieren (Wink et al., 1994; Kröncke, 2001a). SH-Gruppen sind unter anderem durch die Bildung von Fe-S und Zn-S Clustern essentiell für die Tertiärstruktur vieler Proteine. Dabei befinden sich Fe-S Cluster meist innerhalb oder in der Nähe katalytischer Zentren von Enzymen, die durch Nitrosierung inaktiviert werden können (Gopalakrishna et al., 1993; Caselli et al., 1994). Zn-S Cluster bilden relativ stabile „Loops“ in der Aminosäuren-Kette, die unter anderem als sogenannte Zinkfinger in Transkriptionsfaktoren (TF) mit der DNS, RNS oder Proteinen in Interaktion treten können (Klug & Schwabe, 1995). Kröncke et al. zeigten, dass NO unter aeroben Bedingungen Zn2+ aus Zinkfinger-Strukturen freisetzt, was über eine Strukturänderung zur Hemmung der spezifischen Bindung der Zinkfinger-TF an die DNS führt (Abb. 1) (Kröncke et al., 1994; Kröncke & Carlberg, 2000). NO zerstört Zinkfinger-Proteine nicht irreversibel, da die Zinkfinger über das zelluläre Redoxsystem wieder regeneriert werden können (Kröncke & Carlberg, 2000; Kröncke et al., 2002).


Caselli, A., Camici, G., Manao, G., Moneti, G., Pazzagli, L., Cappugi, G. & Ramponi, G. (1994) Nitric oxide causes inactivation of the low molecular weight phosphotyrosine protein phosphatase. J.Biol.Chem., 269, 24878-24882.

Gopalakrishna, R., Chen, Z. H. & Gundimeda, U. (1993) Nitric oxide and nitric oxidegenerating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. J.Biol.Chem., 268, 27180-27185.

Henry, Y., Lepoivre, M., Drapier, J. C., Ducrocq, C., Boucher, J. L. & Guissani, A. (1993) EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J., 7, 1124-1134.

Klug, A. & Schwabe, J. W. (1995) Protein motifs 5. Zinc fingers. FASEB J., 9, 597-604.

Kröncke, K. D. (2001a) Cysteine-Zn2+ complexes: unique molecular switches for inducible nitric oxide synthase-derived NO. FASEB J., 15, 2503-2507.

Kröncke, K. D. & Carlberg, C. (2000) Inactivation of zinc finger transcription factors provides a mechanism for a gene regulatory role of nitric oxide. FASEB J., 14, 166-173.

Kröncke, K. D., Fehsel, K., Schmidt, T., Zenke, F. T., Dasting, I., Wesener, J. R., Bettermann, H., Breunig, K. D. & Kolb-Bachofen, V. (1994) Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem.Biophys.Res.Commun., 200, 1105-1110.

Kröncke, K. D., Klotz, L. O., Suschek, C. V. & Sies, H. (2002) Comparing nitrosative versus oxidative stress toward zinc finger- dependent transcription. Unique role for NO. J.Biol.Chem., 277, 13294-13301.

Laval, F. & Wink, D. A. (1994) Inhibition by nitric oxide of the repair protein, O6-methylguanine-DNA- methyltransferase. Carcinogenesis, 15, 443-447.

Wink, D. A., Nims, R. W., Darbyshire, J. F., Christodoulou, D., Hanbauer, I., Cox, G. W., Laval, F., Laval, J., Cook, J. A., Krishna, M. C. & . (1994) Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem.Res.Toxicol., 7, 519-525.

Anmerkungen

Ohne Hinweis auf eine Übernahme.

Sichter
(Graf Isolan) Schumann

Auch bei Fandom

Zufälliges Wiki