Fandom

VroniPlag Wiki

Wfe/Fragment 002 01

< Wfe

31.351Seiten in
diesem Wiki
Seite hinzufügen
Diskussion0 Share

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.


Typus
Verschleierung
Bearbeiter
Hindemith
Gesichtet
Yes.png
Untersuchte Arbeit:
Seite: 2, Zeilen: 1-4, 6ff
Quelle: Wanken 2003
Seite(n): 2, 3, Zeilen: 2: 9ff; 3: 1ff
C. pyloridis became C. pylori when linguists pointed out that the former was grammatically incorrect (Marshall et al., 1987), and Campylobacter became Helicobacter when it was discovered that its 16S ribosomal RNA was clearly distinct from other Campylobacter species tested (Andersen and Wadström, 2001). In 2005, Warren and Marshall were awarded the Nobel Prize in Medicine for their work on H. pylori.

1.1.2 General characteristics

Helicobacter pylori is a gram-negative, curved or slightly spiral, microaerophilic, slow-growing organism. The most characteristic of it's [sic] enzymes is a potent multisubunit urease. H. pylori is motile and possesses five to seven sheathed polar flagella (Geis et al., 1989; Josenhans et al., 1995). The bacterium's unique feature is its ability to colonize the stomach.

Because of the relevance of this organism to human health, an effort was made to sequence the genome. H. pylori 26695, originally isolated from a gastritis patient in the United Kingdom, was the strain chosen for sequencing because it colonizes piglets and elicits immune and inflammatory responses (Tomb et al., 1997). Strain J99 was sequenced in order to permit within-species genome comparison (Alm et al., 1999). The H. pylori genomes consist of a circular chromosome approximately 1.7 Mb in size. Of the 1590 predicted coding sequences, 279 genes were H. pylori specific. Some of these species-specific genes are thought to play an important role in adaptation of H. pylori to the human stomach. The organism appears to have a limited metabolic and biosynthetic capacity. These characteristics are consistent with those of an organism that colonizes a restricted ecological niche (Tomb et al., 1997). One interesting feature of the genome is that many predicted proteins, including urease, are most closely related to corresponding proteins from gram-positive organisms, archaea, or eukaryotes, rather than from other gram-negative organisms (Tomb et al., 1997), suggesting horizontal gene transfer during the evolution of H. pylori (Garcia-Vallvé et al., 2002; Gressmann et al., 2005).


Alm, R. A., L. S. Ling, D. T. Moir, B. L. King, E. D. Brown, P. C. Doig, D. R. Smith, B. Noonan, B. C. Guild, B. L. deJonge, G. Carmel, P. J. Tummino, A. Caruso, M, Uria-Nickelsen, D. M, Mills, C. Ives, R. Gibson, D. Merberg, S. D. Mills, Q. Jiang, D. E. Taylor, G. F. Vovis, and T. J. Trust, Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori, Nature, 397, 176-180, 1999.

Andersen, L. P., and T. Wadstrom, Basic bacteriology and culture, chap, 4, pp, 27-38, Helicobacter pylori: Physiology and genetics; ASM. 2001,

Garcia-Vallve, S., P. J. Janssen, and C. A. Ouzounis, Genetic variation between Helicobacter pylori strains: gene acquisition or loss?, Trends Microbiol, 10, 445447, 2002.

Geis, G., H. Leying, S. Suerbaum, U. Mai, and W. Opferkuch, Ultrastrueture and chemical analysis of Campylobacter pylori flagella, J Clin Microbiol, 27, 436-441, 1989.

Gressmann, H., B. Linz, R. Ghai, K. P. Pleissner, R. Sehlapbach, Y. Yamaoka, C. Kraft, S. Suerbaum, T. F. Meyer, and M. Achtman, Gain and loss of multiple genes during the evolution of Helicobacter pylori, PLoS Genet, 1, 2005.

Josenhans, C., A. Labigne, and S. Suerbaum, Comparative ultrastruetural and functional studies of Helicobacter pylori and Helicobacter mustelae flagellin mutants: both flagellin subunits, flaA and flaB, are necessary for full motility in Helicobacter species, J Bacteriol, 177, 3010-3020, 1995.

Marshall, B. J., E. W. McCallum, and C. Prakash, Campylobacter pyloridis and gastritis, Gastroenterology, 92, 2051-2051, 1987.

Tomb, J. F., O. White, A. E. Kerlavage, E. A. Clayton, G. G. Sutton, E. D. Fleischmann, K. A. Ketchum, H. P. Klenk, S. Gill, B. A. Dougherty, K. Nelson, J. Quackenbush, L. Zhou, E. F. Kirkness, S. Peterson, B. Loftus, D. Eichardson, E. Dodson, H. G. Khalak, A. Glodek, K. McKenney, L. M. Fitzegerald, N. Lee, M. D. Adams, E. K. Hickey, D. E. Berg, J. D. Gocayne, T. E. Utterback, J. D. Peterson, J. M. Kelley, M. D. Cotton, J. M. Weidman, C. Fujii, C. Bowman, L. Watthey, E. Wallin, W. S. Hayes, M. Borodovsky, P. D. Karp, H. O. Smith, C. M. Fraser, and J. C. Venter, The complete genome sequence of the gastric pathogen Helicobacter pylori, Nature, 388, 539-547, 1997.

C. pyloridis became C. pylori when linguists pointed out that the former was grammatically incorrect (101), and Campylobacter became Helicobacter when it was discovered that its 16S ribosomal RNA was clearly distinct from other Campylobacter species tested (63).

General characteristics

Helicobacter pylori is a gram-negative, curved or slightly spiral, microaerophilic, slow-growing organism. Its most characteristic enzyme is a potent multi-subunit urease. H. pylori is motile and possesses four to six sheathed polar flagella (80, 150). The bacterium’s unique feature is its ability to colonize the stomach. [...]

Because of the relevance of this organism to human health, an effort was made to sequence the genome. H. pylori 26695, originally isolated from a gastritis patient in

[page 3]

the United Kingdom, was the strain chosen for sequencing because it colonizes piglets and elicits immune and inflammatory responses (157). Strain J99 was later sequenced (7). The H. pylori genomes consist of a circular chromosome approximately 1.7 Mb in size. Of the 1590 predicted coding sequences, 594 lack homology to E. coli or H. influenzae genes (76). 499 of these lacked obvious homology to any sequences in databases at the time of annotation, in 1997 (34). Some of these species-specific genes no doubt play an important role in adaptation of H. pylori to the human stomach.

[...] The organism appears to have a limited metabolic and biosynthetic capacity. These characteristics are consistent with those of an organism that colonizes a restricted ecological niche (157). One interesting feature of the genome is that many predicted proteins, including urease, are most closely related to corresponding proteins from Gram-positive organisms, Archaea, or eukaryotes, rather than from other Gram-negative organisms (157), suggesting horizontal gene transfer during the evolution of H. pylori.


7. Alm, R., L.-S. L. Ling, D. T. Moir, B. L. King, E. D. Brown, P. C. Doig, D. R. Smith, B. Noonan, B. C. Guild, B. L. deJonge, G. Carmel, P. J. Tummino, A. Caruso, M. Uria-Nickelsen, D. M. Mills, C. Ives, R. Gibson, D. Merberg, S. D. Mills, Q. Jiang, D. E. Taylor, G. F. Vovis, and T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176-180.

34. Cover, T. L., D. E. Berg, M. J. Blaser, and H. L. T. Mobley. 2001. H. pylori pathogenesis, p. 509-558. In E. A. Groisman (ed.), Principles of Bacterial Pathogenesis. Academic Press, San Diego.

63. Goodwin, C. S. 1994. How Helicobacter pylori acquired its name, and how it overcomes gastric defence mechanisms. Journal of Gastroenterology and Hepatology 9:S1-3.

76. Huynen, M., T. Dandelkar, and P. Bork. 1998. Differential genome analysis applied to the species-specific features of Helicobacter pylori. FEBS Letters 426:1-5.

80. Jones, D. M., A. Curry, and A. J. Fox. 1985. An ultrastructural study of the gastric Campylobacter-like organism 'Campylobacter pyloridis'. Journal of General Microbiology 131:2335-41.

101. Marshall, B. J., and C. S. Goodwin. 1987. Revised nomenclature of Campylobacter pyloridis. Int. J. Systematic Bacteriol. 37:68.

150. Stark, R. M., J. Greenman, and M. R. Millar. 1995. Physiology and biochemistry of Helicobacter pylori. British Journal of Biomedical Science 52:282-290.

157. Tomb, J.-F., others, and J. C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539-547.

Anmerkungen

The source is not mentioned.

Sichter
(Hindemith) Schumann

Auch bei Fandom

Zufälliges Wiki